Natarajan Bharath, Krishnamurthy Ajay, Qin Xin, Emiroglu Caglar D, Forster Amanda, Foster E Johan, Weder Christoph, Fox Douglas M, Keten Sinan, Obrzut Jan, Gilman Jeffrey W
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Department of Physics, Georgetown University, Washington, DC 20057, USA.
Adv Funct Mater. 2018;28(26). doi: 10.1002/adfm.201800032.
Most attempts to emulate the mechanical properties of strong and tough natural composites using helicoidal films of wood-derived cellulose nanocrystals (w-CNCs) fall short in mechanical performance due to the limited shear transfer ability between the w-CNCs. This shortcoming is ascribed to the small w-CNC-w-CNC overlap lengths that lower the shear transfer efficiency. Herein, we present a simple strategy to fabricate superior helicoidal CNC films with mechanical properties that rival those of the best natural materials and are some of the best reported for photonic CNC materials thus far. Assembling the short w-CNCs with a minority fraction of high aspect ratio CNCs derived from tunicates (t-CNCs), we report remarkable simultaneous enhancement of all in-plane mechanical properties and out-of-plane flexibility. The important role of t-CNCs is revealed by coarse grained molecular dynamics simulations where the property enhancement are due to increased interaction lengths and the activation of additional toughening mechanisms. At t-CNC contents greater than 5% by mass the mixed films also display UV reflecting behaviour. These damage tolerant optically active materials hold great promise for application as protective coatings. More broadly, we expect the strategy of using length-bidispersity to be adaptable to mechanically enhancing other matrix-free nanoparticle ensembles.
大多数尝试使用源自木材的纤维素纳米晶体(w-CNCs)的螺旋薄膜来模拟强韧天然复合材料机械性能的努力,由于w-CNCs之间有限的剪切传递能力,在机械性能方面未能达到预期。这种缺点归因于w-CNC-w-CNC重叠长度小,降低了剪切传递效率。在此,我们提出了一种简单的策略来制造具有优异机械性能的螺旋CNC薄膜,其机械性能可与最佳天然材料相媲美,并且是迄今为止光子CNC材料中报道的一些最佳性能。通过将短的w-CNCs与一小部分源自被囊动物的高纵横比CNC(t-CNCs)组装在一起,我们报告了所有面内机械性能和面外柔韧性的显著同时增强。粗粒度分子动力学模拟揭示了t-CNCs的重要作用,其中性能增强归因于相互作用长度的增加和额外增韧机制的激活。当t-CNC含量大于5质量%时,混合薄膜还表现出紫外线反射行为。这些耐损伤的光学活性材料作为保护涂层具有很大的应用前景。更广泛地说,我们期望使用长度双分散性的策略能够适用于机械增强其他无基质纳米颗粒集合体。