Zhao Dan, Gimenez-Pinto Vianney, Jimenez Andrew M, Zhao Longxi, Jestin Jacques, Kumar Sanat K, Kuei Brooke, Gomez Enrique D, Prasad Aditya Shanker, Schadler Linda S, Khani Mohammad M, Benicewicz Brian C
Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.
Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
ACS Cent Sci. 2017 Jul 26;3(7):751-758. doi: 10.1021/acscentsci.7b00157. Epub 2017 Jun 7.
While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Formula: see text] (10-100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Formula: see text] (1-10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young's modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material's fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers.
虽然约75%的商业应用聚合物是半结晶的,但这些材料通常较低的机械模量,特别是对于那些玻璃化转变温度低于室温的材料,限制了它们在结构应用中的使用。本文的重点是通过纳米颗粒(NP)的可控多尺度组装来解决这一缺陷,特别是利用聚合物结晶动力学。这个过程产生了一种多尺度NP结构,它以层状半结晶聚合物形态为模板,跨越被生长晶体吞噬的NP、在片层间区域[间距为[公式:见正文](10 - 100纳米)]排列成层的NP,以及在原纤维尺度[公式:见正文](1 - 10微米)组装成分形物体的NP。这种层次结构中NP的相对比例可以通过结晶速度轻松控制。添加NP通常会提高聚合物的杨氏模量,但多尺度有序化的效果比NP无序(即随机分散在基体中)状态的效果大近一个数量级。由于在此过程中材料的断裂韧性实际上保持不变,这种组装策略使我们能够制造出具有高模量的材料,同时保留聚合物吸引人的高韧性和低密度特性。