Jones Thomas A, Monaco Thomas A
Forage and Range Research Laboratory USDA-Agricultural Research Service Logan Utah USA.
Ecol Evol. 2024 Oct 23;14(10):e70392. doi: 10.1002/ece3.70392. eCollection 2024 Oct.
To infer adaptation of plant material, restoration practitioners often consider only surrogate geographic or climatic information. However, empirical biomass data could assist in deciding what material to use where. To test this approach, we transplanted seven bluebunch wheatgrass (BBWG; ) and five Snake River wheatgrass (SRWG; ) populations to three sites ranging from low to high precipitation (LPPT, MPPT, and HPPT). We measured establishment-year (2011) biomass at all sites and 2012-16 biomass at MPPT and HPPT. When data were standardized by site, P-7 and Anatone produced the most BBWG biomass across sites and Wahluke the least in both 2011 and 2012-16, while E-58X produced the most SRWG biomass and Secar and E-49X the least in 2011 and 2012-16, respectively. Among BBWG populations in 2011, relative performance of P-7 (G6 generation) and Goldar increased and Whitmar decreased at wetter sites, while Columbia was stable (high) and Wahluke was stable (low) over sites. Among SRWG populations in 2011, Secar, Secar78, and E-58X increased at drier sites and Discovery at wetter sites. However, once established, populations of both species were much more similar for trend. In 2012-16, trend somewhat increased for five BBWG populations from MPPT to HPPT, was stable for Wahluke, but declined for Columbia, while all five SRWG populations declined at HPPT. These results suggest that, once established, BBWG is mostly stable across sites, while SRWG is less adapted to wetter sites. In 2012-16, BBWG populations originating at drier (or wetter) sites mostly performed relatively better at MPPT (or HPPT), suggesting adaptation to site. However, in the establishment year (2011), this relationship did not hold, suggesting seedling vigor and immature growth rate play a stronger role than precipitation at the site of origin.
为了推断植物材料的适应性,恢复从业者通常只考虑替代的地理或气候信息。然而,实证生物量数据有助于决定在何处使用何种材料。为了测试这种方法,我们将7个蓝茎冰草(BBWG)种群和5个蛇河冰草(SRWG)种群移植到了3个降水从低到高的地点(低降水量地点、中等降水量地点和高降水量地点)。我们测量了所有地点2011年的建植年生物量以及中等降水量地点和高降水量地点2012 - 2016年的生物量。当数据按地点标准化后,在2011年和2012 - 2016年期间,P - 7和阿纳托内产生的BBWG生物量在所有地点中最多,瓦卢克产生的生物量最少;而在2011年和2012 - 2016年期间,E - 58X产生的SRWG生物量最多,西卡尔和E - 49X产生的生物量最少。在2011年的BBWG种群中,P - 7(G6代)和戈尔达尔在较湿润地点的相对表现增加,惠特马尔的相对表现下降,而哥伦比亚在各地点表现稳定(高),瓦卢克在各地点表现稳定(低)。在2011年的SRWG种群中,西卡尔、西卡尔78和E - 58X在较干燥地点表现增加,发现者在较湿润地点表现增加。然而,一旦建植,两个物种的种群在趋势上更为相似。在2012 - 2016年,5个BBWG种群从中等降水量地点到高降水量地点趋势有所增加,瓦卢克保持稳定,但哥伦比亚下降,而所有5个SRWG种群在高降水量地点下降。这些结果表明,一旦建植,BBWG在各地点大多稳定,而SRWG对较湿润地点的适应性较差。在2012 - 2016年,起源于较干燥(或较湿润)地点的BBWG种群在中等降水量地点(或高降水量地点)大多表现相对较好,表明对地点的适应性。然而,在建植年(2011年),这种关系并不成立,表明幼苗活力和未成熟生长速率比起源地的降水量起更强的作用。