Suppr超能文献

开发用于基于镁的植入物生物降解建模的不确定性量化工作流程的最佳实践

Best Practices in Developing a Workflow for Uncertainty Quantification for Modeling the Biodegradation of Mg-Based Implants.

作者信息

AlBaraghtheh Tamadur, Willumeit-Römer Regine, Zeller-Plumhoff Berit

机构信息

Institute of Metallic Biomaterials, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany.

Institute of Surface Science, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany.

出版信息

Adv Sci (Weinh). 2024 Dec;11(46):e2403543. doi: 10.1002/advs.202403543. Epub 2024 Oct 25.

Abstract

Computational models of electrochemical biodegradation of magnesium (Mg)-based implants are uncertain. To quantify the model uncertainty, iterative evaluations are needed. This presents a challenge, especially for complex, multiscale models as is the case here. Approximating high-cost and complex models with easy-to-evaluate surrogate models can reduce the computational burden. However, the application of this approach to complex degradation models remains limited and understudied. This work provides a workflow to quantify different types of uncertainty within biodegradation models. Three surrogate models-Kriging, polynomial chaos expansion, and polynomial chaos Kriging-are compared based on the minimum number of samples required for surrogate model construction, surrogate model accuracy, and computational time. The surrogate models are tested for three computational models representing Mg-based implant biodegradation. Global sensitivity analysis and uncertainty propagation are used to analyze the uncertainties associated with the different models. The findings indicate that Kriging proves effective for calibrating diverse computational models with minimal computational time and cost, while polynomial chaos expansion and polynomial chaos Kriging exhibit greater capability in predicting propagated uncertainties within the computational models.

摘要

镁(Mg)基植入物电化学生物降解的计算模型存在不确定性。为了量化模型的不确定性,需要进行迭代评估。这带来了一个挑战,特别是对于像这里这样复杂的多尺度模型。用易于评估的替代模型来近似高成本和复杂的模型可以减轻计算负担。然而,这种方法在复杂降解模型中的应用仍然有限且研究不足。这项工作提供了一个工作流程,以量化生物降解模型中不同类型的不确定性。基于替代模型构建所需的最少样本数量、替代模型精度和计算时间,对三种替代模型——克里金法、多项式混沌展开法和多项式混沌克里金法——进行了比较。对代表镁基植入物生物降解的三种计算模型测试了替代模型。使用全局敏感性分析和不确定性传播来分析与不同模型相关的不确定性。研究结果表明,克里金法被证明在以最少的计算时间和成本校准各种计算模型方面是有效的,而多项式混沌展开法和多项式混沌克里金法在预测计算模型中的传播不确定性方面表现出更大的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f5d/11633495/d630e1284334/ADVS-11-2403543-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验