Suppr超能文献

在低于40纳米的分辨率下评估纯镁降解层的形态:3D成像。

Evaluating the morphology of the degradation layer of pure magnesium 3D imaging at resolutions below 40 nm.

作者信息

Zeller-Plumhoff Berit, Laipple Daniel, Slominska Hanna, Iskhakova Kamila, Longo Elena, Hermann Alexander, Flenner Silja, Greving Imke, Storm Malte, Willumeit-Römer Regine

机构信息

Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, 21502, Geesthacht, Germany.

Helmholtz-Zentrum hereon GmbH, Research Reactor, Max-Planck-Straße 1, 21502, Geesthacht, Germany.

出版信息

Bioact Mater. 2021 Apr 30;6(12):4368-4376. doi: 10.1016/j.bioactmat.2021.04.009. eCollection 2021 Dec.

Abstract

Magnesium is attractive for the application as a temporary bone implant due to its inherent biodegradability, non-toxicity and suitable mechanical properties. The degradation process of magnesium in physiological environments is complex and is thought to be a diffusion-limited transport problem. We use a multi-scale imaging approach using micro computed tomography and transmission X-ray microscopy (TXM) at resolutions below 40 nm. Thus, we are able to evaluate the nanoporosity of the degradation layer and infer its impact on the degradation process of pure magnesium in two physiological solutions. Magnesium samples were degraded in simulated body fluid (SBF) or Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS) for one to four weeks. TXM reveals the three-dimensional interconnected pore network within the degradation layer for both solutions. The pore network morphology and degradation layer composition are similar for all samples. By contrast, the degradation layer thickness in samples degraded in SBF was significantly higher and more inhomogeneous than in DMEM+10%FBS. Distinct features could be observed within the degradation layer of samples degraded in SBF, suggesting the formation of microgalvanic cells, which are not present in samples degraded in DMEM+10%FBS. The results suggest that the nanoporosity of the degradation layer and the resulting ion diffusion processes therein have a limited influence on the overall degradation process. This indicates that the influence of organic components on the dampening of the degradation rate by the suppression of microgalvanic degradation is much greater in the present study.

摘要

镁因其固有的生物可降解性、无毒性和合适的机械性能,作为临时骨植入物具有很大的应用吸引力。镁在生理环境中的降解过程很复杂,被认为是一个扩散受限的传输问题。我们采用多尺度成像方法,使用分辨率低于40纳米的微型计算机断层扫描和透射X射线显微镜(TXM)。因此,我们能够评估降解层的纳米孔隙率,并推断其对纯镁在两种生理溶液中降解过程的影响。将镁样品在模拟体液(SBF)或含10%胎牛血清(FBS)的杜氏改良 Eagle 培养基(DMEM)中降解一至四周。TXM揭示了两种溶液中降解层内的三维相互连接的孔隙网络。所有样品的孔隙网络形态和降解层组成相似。相比之下,在SBF中降解的样品中的降解层厚度明显高于在DMEM + 10%FBS中的降解层厚度,且更不均匀。在SBF中降解的样品的降解层内可观察到明显特征,表明形成了微电池,而在DMEM + 10%FBS中降解的样品中不存在微电池。结果表明,降解层的纳米孔隙率及其内部产生的离子扩散过程对整体降解过程的影响有限。这表明在本研究中,有机成分通过抑制微电池降解对降解速率的抑制作用影响更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c460/8111030/34d714642dd4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验