Jiang Shu, Bennett Debbie L, Chen Simin, Toriola Adetunji T, Colditz Graham A
Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.
Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
Cancer Prev Res (Phila). 2025 Jan 6;18(1):23-29. doi: 10.1158/1940-6207.CAPR-24-0338.
Mammographic density is a strong risk factor for breast cancer and is reported clinically as part of Breast Imaging Reporting and Data System (BI-RADS) results issued by radiologists. Automated assessment of density is needed that can be used for both full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) as both types of exams are acquired in standard clinical practice. We trained a deep learning model to automate the estimation of BI-RADS density from a prospective Washington University clinic-based cohort of 9,714 women, entering into the cohort in 2013 with follow-up through October 31, 2020. The cohort included 27% non-Hispanic Black women. The trained algorithm was assessed in an external validation cohort that included 18,360 women screened at Emory from January 1, 2013, and followed up through December 31, 2020, that included 42% non-Hispanic Black women. Our model-estimated BI-RADS density demonstrated substantial agreement with the density as assessed by radiologists. In the external validation, the agreement with radiologists for category B 81% and C 77% for FFDM and B 83% and C 74% for DBT shows important distinction for separation of women with dense breast. We obtained a Cohen's κ of 0.72 (95% confidence interval, 0.71-0.73) in FFDM and 0.71 (95% confidence interval, 0.69-0.73) in DBT. We provided a consistent and fully automated BI-RADS estimation for both FFDM and DBT using a deep learning model. The software can be easily implemented anywhere for clinical use and risk prediction. Prevention Relevance: The proposed model can reduce interobserver variability in BI-RADS density assessment, thereby providing more standard and consistent density assessment for use in decisions about supplemental screening and risk assessment.
乳腺钼靶密度是乳腺癌的一个重要风险因素,临床报告中它是放射科医生出具的乳腺影像报告和数据系统(BI-RADS)结果的一部分。需要对密度进行自动化评估,该评估可用于全视野数字化乳腺钼靶(FFDM)和数字化乳腺断层合成(DBT),因为这两种检查在标准临床实践中均可进行。我们训练了一个深度学习模型,以根据华盛顿大学基于临床的前瞻性队列中9714名女性的数据自动估计BI-RADS密度,这些女性于2013年进入该队列,并随访至2020年10月31日。该队列包括27%的非西班牙裔黑人女性。在一个外部验证队列中对训练好的算法进行了评估,该队列包括2013年1月1日至2020年12月31日在埃默里大学接受筛查的18360名女性,其中包括42%的非西班牙裔黑人女性。我们的模型估计的BI-RADS密度与放射科医生评估的密度显示出高度一致性。在外部验证中,FFDM中与放射科医生对B类的一致性为81%,C类为77%;DBT中对B类的一致性为83%,C类为74%,这对于区分乳腺致密的女性具有重要意义。在FFDM中,我们获得的科恩kappa系数为0.72(95%置信区间,0.71 - 0.73),在DBT中为0.71(95%置信区间,0.69 - 0.73)。我们使用深度学习模型为FFDM和DBT提供了一致且完全自动化的BI-RADS估计。该软件可轻松在任何地方实施用于临床和风险预测。预防相关性:所提出的模型可以减少BI-RADS密度评估中的观察者间变异性,从而为辅助筛查和风险评估决策提供更标准和一致的密度评估。