Dong Vincent, Mankowski Walter, Silva Filho Telmo M, McCarthy Anne Marie, Kontos Despina, Maidment Andrew D A, Barufaldi Bruno
University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania, United States.
Columbia University, Department of Radiology, New York, United States.
J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22010. doi: 10.1117/1.JMI.12.S2.S22010. Epub 2025 May 29.
Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.
We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( , ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes.
LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ : , : , : , : ] and an AUC of for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ : 0.880, : 0.779, : 0.878, : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades.
Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.
由于病变掩盖,乳腺癌风险取决于对乳腺密度的准确评估。尽管遵循标准化指南,但放射科医生对乳腺密度的评估仍存在很大差异。自动乳腺密度评估工具利用深度学习,但受模型稳健性和可解释性的限制。
我们使用从数字乳腺断层合成筛查的原始中央投影中提取的组织特异性放射组学特征,评估了一种特征选择方法(RFE-SHAP)对乳腺密度等级进行分类的稳健性( , )。RFE-SHAP利用传统且可解释的人工智能方法来识别高度预测性和有影响力的特征。使用简单逻辑回归(LR)分类器评估分类性能,并采用无监督聚类来研究密度等级类别的内在可分离性。
LR分类器在每个密度等级的接收器操作特征曲线下的交叉验证面积(AUC)为[ : , : , : , : ],将患者分类为非致密或致密的AUC为 。在外部验证中,我们观察到每个密度等级的AUC为[ : 0.880, : 0.779, : 0.878, : 0.673],非致密/致密AUC为0.823。无监督聚类突出了这些特征表征不同密度等级的能力。
我们用于分类乳腺组织密度的RFE-SHAP特征选择方法在考虑自然类不平衡后,能很好地推广到验证数据集,并且所识别的放射组学特征正确地捕捉了密度等级的进展。我们的结果为未来将选定的放射组学特征与乳腺组织密度的临床描述符相关联的研究提供了支持。