Velarde Mathias, Sempore Michel-Yves, Allibert Valentine, Montel Valérie, Castells Josiane, Treffel Loïc, Chopard Angèle, Brioche Thomas, Cochon Laetitia, Morel Jérome, Bastide Bruno, Durieux Anne-Cécile, Stevens Laurence, Freyssenet Damien
Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet-Saint-Etienne, Saint Etienne, France.
Département d'Anesthésie et Réanimation, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France.
J Cachexia Sarcopenia Muscle. 2024 Dec;15(6):2323-2337. doi: 10.1002/jcsm.13559. Epub 2024 Oct 25.
Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. In the present study, we hypothesize that alongside the loss in skeletal muscle mass, modifications in the expression profile of genes encoding critical determinants of resting membrane potential, excitation-contraction coupling and Ca handling contribute to the decline in skeletal muscle force.
Healthy male volunteers (n = 18) participated in a 5-day dry immersion (DI) study, an Earth-based model of simulated microgravity. Muscle force measurement and MRI analysis of the cross-sectional area of thigh muscles were performed before and after DI. Biopsies of the vastus lateralis skeletal muscle performed before and after DI were used for the determination Ca properties of isolated muscle fibres, molecular and biochemical analyses.
The extent of the decline in force, measured as maximal voluntary contraction of knee extensors (-11.1%, P < 0.01) was higher than the decline in muscle mass (-2.5%, P < 0.01). The decline in muscle mass was molecularly supported by a significant repression of the anabolic IGF-1/Akt/mTOR pathway (-19.9% and -40.9% in 4E-BP1 and RPS6 phosphorylation, respectively), a transcriptional downregulation of the autophagy-lysosome pathway and a downregulation in the mRNA levels of myofibrillar protein slow isoforms. At the single fibre level, biochemical and tension-pCa curve analyses showed that the loss in force was independent of fibre type (-11% and -12.3% in slow and fast fibres, respectively) and Ca activation properties. Finally, we showed a significant remodelling in the expression of critical players of resting membrane potential (aquaporin 4: -24.9%, ATP1A2: +50.4%), excitation-contraction coupling (CHRNA1: +75.1%, CACNA2D1: -23.5%, JPH2: -24.2%, TRDN: -15.6%, S100A1: +27.2%), and Ca handling (ATP2A2: -32.5%, CASQ1: -15%, ORAI1: -36.2%, ATP2B1: -19.1%).
These findings provide evidence that a deregulation in the expression profile of critical molecular determinants of resting membrane potential, excitation-contraction coupling, and Ca handling could be involved in the loss of muscle force induced by DI. They also provide the paradigm for the understanding of muscle force loss during prolonged bed rest periods as those encountered in intensive care unit.
地球轨道上的宇航员会经历微重力环境,导致骨骼肌质量和功能下降。在地球上,模拟微重力的模型表明,肌肉力量的损失程度大于肌肉质量的损失。这种肌肉力量不成比例损失背后的原因仍知之甚少。在本研究中,我们假设,除了骨骼肌质量的损失外,编码静息膜电位、兴奋-收缩偶联和钙处理关键决定因素的基因表达谱的改变也会导致骨骼肌力量下降。
健康男性志愿者(n = 18)参与了一项为期5天的干浸(DI)研究,这是一种基于地球的模拟微重力模型。在DI前后进行了肌肉力量测量和大腿肌肉横截面积的MRI分析。DI前后采集的股外侧肌骨骼肌活检样本用于测定分离肌纤维的钙特性、分子和生化分析。
以膝伸肌最大自主收缩衡量的力量下降程度(-11.1%,P < 0.01)高于肌肉质量的下降程度(-2.5%,P < 0.01)。肌肉质量的下降在分子水平上表现为合成代谢IGF-1/Akt/mTOR通路的显著抑制(4E-BP1和RPS6磷酸化分别下降-19.9%和-40.9%)、自噬-溶酶体通路的转录下调以及肌原纤维蛋白慢亚型mRNA水平的下调。在单纤维水平上,生化和张力-pCa曲线分析表明,力量的损失与纤维类型无关(慢纤维和快纤维分别下降-11%和-12.3%)以及钙激活特性无关。最后,我们发现静息膜电位的关键调节因子(水通道蛋白4:-24.9%,ATP1A2:+50.4%)、兴奋-收缩偶联(CHRNA1:+75.1%,CACNA2D1:-23.5%,JPH2:-24.2%,TRDN:-15.6%,S100A1:+27.2%)和钙处理(ATP2A2:-32.5%,CASQ1:-15%,ORAI1:-36.2%,ATP2B1:-19.1%)的表达发生了显著重塑。
这些发现提供了证据,表明静息膜电位、兴奋-收缩偶联和钙处理的关键分子决定因素的表达谱失调可能与DI诱导的肌肉力量损失有关。它们还为理解重症监护病房中长时间卧床休息期间的肌肉力量损失提供了范例。