Sobreiro-Almeida Rita, Santos Sara C, Decarli Monize C, Costa Marcelo, Correia Tiago R, Babilotte Joanna, Custódio Catarina A, Moroni Lorenzo, Mano João F
Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ET, The Netherlands.
Adv Sci (Weinh). 2024 Dec;11(47):e2406569. doi: 10.1002/advs.202406569. Epub 2024 Oct 25.
This study proposes a tunable ink engineering methodology to allow 3D printing processability of highly bioactive but otherwise low-viscous and unprintable blood-derived materials. The hypothesis relies on improving the viscoelasticity and shear thinning behavior of platelet lysates (PL) and albumins (BSA) solutions by covalent coupling, enabling simultaneous extrusion and photocrosslinking upon filament deposition. The available amine groups on proteins (PL and BSA) are exploited for coupling with carboxyl groups present in methacrylated proteins (hPLMA and BSAMA), by leveraging carbodiimide chemistry. This reaction enabled the creation of a pre-gel from these extremely low-viscous materials (≈ 1 Pa), with precise tuning of the reaction, resulting in inks with a range of controlled viscosities and elasticities. Shape-fidelity analysis is performed on 3D-printed multilayered constructs, demonstrating the ability to reach clinically relevant sizes (>2 cm in size). After photocrosslinking, the scaffolds showcased a mechanically robust structure with sustained protein release over time. Bioactivity is evaluated using human adipose-derived stem cells, resulting in increased viability and metabolic activity over time. The herein described research methodology widens the possibilities for the use of low-viscosity materials in 3D printing but also enables the direct application of patient and blood-derived materials in precision medicine.
本研究提出了一种可调节的墨水工程方法,以实现具有高生物活性但粘度低且无法打印的血液衍生材料的3D打印加工性能。该假设依赖于通过共价偶联改善血小板裂解物(PL)和白蛋白(BSA)溶液的粘弹性和剪切变稀行为,从而在细丝沉积时实现同时挤出和光交联。利用碳二亚胺化学,利用蛋白质(PL和BSA)上可用的胺基与甲基丙烯酸化蛋白质(hPLMA和BSAMA)中存在的羧基偶联。该反应能够从这些极低粘度的材料(≈1 Pa)中制备预凝胶,通过精确调节反应,得到一系列具有可控粘度和弹性的墨水。对3D打印的多层结构进行形状保真度分析,证明其能够达到临床相关尺寸(尺寸>2 cm)。光交联后,支架展示出机械坚固的结构,并能随时间持续释放蛋白质。使用人脂肪来源的干细胞评估生物活性,结果显示随着时间的推移,细胞活力和代谢活性增加。本文所述的研究方法拓宽了在3D打印中使用低粘度材料的可能性,同时也使患者和血液衍生材料能够直接应用于精准医学。