Aurbach Franziska, Wang Fei, Nestler Britta
Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
J Chem Phys. 2024 Oct 28;161(16). doi: 10.1063/5.0233997.
Wetting phenomena have been widely observed in our daily lives, such as dew on lotus leaf, and applied in technical applications, e.g., ink-jet printing. In contrast to constant liquid-solid and solid-gas interfacial tensions in Young's law, we here focus on the wetting phenomena by considering varying fluid-solid interfacial tensions. We analyze the energy landscape, the map of Young's contact angle, the number and corresponding contact angle of local energy minima, and the contact angle hysteresis for a liquid droplet on a solid substrate in a gas phase. In addition, a gas bubble on a solid substrate in a liquid phase has been scrutinized from the aspect of surface energy minimization. The wetting effect has been regarded, where the liquid and gas species penetrate into the solid phase on the microscopic scale [F. Wang and B. Nestler, Phys. Rev. Lett. 132, 126202 (2024)]. We assume the liquid-solid and the solid-gas interfacial tensions to be a function dependent on the volume fraction of the liquid and the gas species and investigate the impact of the size ratio of the droplet to the solid surface that is overlooked in existing theories on the wetting phenomena. Our finding sheds light on the microscopic origin of the contact angle hysteresis and the droplet size effect on the wetting phenomena.
润湿现象在我们的日常生活中广泛存在,比如荷叶上的露珠,并且在技术应用中也有应用,例如喷墨打印。与杨氏定律中恒定的液 - 固和固 - 气界面张力不同,我们在此通过考虑变化的流 - 固界面张力来关注润湿现象。我们分析了气相中固体基底上液滴的能量景观、杨氏接触角图谱、局部能量极小值的数量及相应接触角,以及接触角滞后。此外,还从表面能量最小化的角度研究了液相中固体基底上的气泡。在微观尺度上,已经考虑了液体和气体物种渗透到固相中的润湿效应[F. Wang和B. Nestler,《物理评论快报》132,126202(2024)]。我们假设液 - 固和固 - 气界面张力是依赖于液体和气体物种体积分数的函数,并研究液滴与固体表面尺寸比(现有润湿现象理论中被忽视的因素)对润湿现象的影响。我们的发现揭示了接触角滞后的微观起源以及液滴尺寸对润湿现象的影响。