School of Data Science, City University of Hong Kong, Kowloon, Hong Kong SAR 00001, China.
Department of Management Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 00001, China.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae547.
Enhancing patient response to immune checkpoint inhibitors (ICIs) is crucial in cancer immunotherapy. We aim to create a data-driven mathematical model of the tumor immune microenvironment (TIME) and utilize deep reinforcement learning (DRL) to optimize patient-specific ICI therapy combined with chemotherapy (ICC). Using patients' genomic and transcriptomic data, we develop an ordinary differential equations (ODEs)-based TIME dynamic evolutionary model to characterize interactions among chemotherapy, ICIs, immune cells, and tumor cells. A DRL agent is trained to determine the personalized optimal ICC therapy. Numerical experiments with real-world data demonstrate that the proposed TIME model can predict ICI therapy response. The DRL-derived personalized ICC therapy outperforms predefined fixed schedules. For tumors with extremely low CD8 + T cell infiltration ('extremely cold tumors'), the DRL agent recommends high-dosage chemotherapy alone. For tumors with higher CD8 + T cell infiltration ('cold' and 'hot tumors'), an appropriate chemotherapy dosage induces CD8 + T cell proliferation, enhancing ICI therapy outcomes. Specifically, for 'hot tumors', chemotherapy and ICI are administered simultaneously, while for 'cold tumors', a mid-dosage of chemotherapy makes the TIME 'hotter' before ICI administration. However, in several 'cold tumors' with rapid resistant tumor cell growth, ICC eventually fails. This study highlights the potential of utilizing real-world clinical data and DRL algorithm to develop personalized optimal ICC by understanding the complex biological dynamics of a patient's TIME. Our ODE-based TIME dynamic evolutionary model offers a theoretical framework for determining the best use of ICI, and the proposed DRL agent may guide personalized ICC schedules.
提高患者对免疫检查点抑制剂 (ICI) 的反应是癌症免疫治疗的关键。我们旨在创建一个基于数据的肿瘤免疫微环境 (TIME) 数学模型,并利用深度强化学习 (DRL) 来优化患者特异性 ICI 联合化疗 (ICC) 治疗。我们使用患者的基因组和转录组数据,开发了一个基于常微分方程 (ODE) 的 TIME 动态演化模型,以描述化疗、ICI、免疫细胞和肿瘤细胞之间的相互作用。训练一个 DRL 代理来确定个性化的最佳 ICC 治疗方案。使用真实世界数据的数值实验表明,所提出的 TIME 模型可以预测 ICI 治疗反应。DRL 衍生的个性化 ICC 治疗优于预定义的固定方案。对于 CD8+T 细胞浸润极低的肿瘤(“极冷肿瘤”),DRL 代理建议单独使用高剂量化疗。对于 CD8+T 细胞浸润较高的肿瘤(“冷肿瘤”和“热肿瘤”),适当的化疗剂量会诱导 CD8+T 细胞增殖,从而增强 ICI 治疗效果。具体来说,对于“热肿瘤”,同时给予化疗和 ICI;对于“冷肿瘤”,在给予 ICI 之前,中剂量化疗会使 TIME“变热”。然而,在几个 CD8+T 细胞浸润快速增长的“冷肿瘤”中,ICC 最终失败。本研究强调了利用真实世界临床数据和 DRL 算法通过了解患者 TIME 的复杂生物学动态来开发个性化最佳 ICC 的潜力。我们基于 ODE 的 TIME 动态演化模型为确定 ICI 的最佳使用提供了理论框架,所提出的 DRL 代理可能会指导个性化 ICC 方案。