文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三维免疫类器官模型评价免疫检查点抑制剂的肿瘤反应。

Evaluation of tumor response to immune checkpoint inhibitors by a 3D immunotumoroid model.

机构信息

Biomarker Discovery, Mayo Clinic, Rochester, MN, United States.

Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States.

出版信息

Front Immunol. 2024 Mar 28;15:1356144. doi: 10.3389/fimmu.2024.1356144. eCollection 2024.


DOI:10.3389/fimmu.2024.1356144
PMID:38605943
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11007648/
Abstract

BACKGROUND: Only 20 percent of renal and bladder cancer patients will show a significant response to immune checkpoint inhibitor (ICI) therapy, and no test currently available accurately predicts ICI response. METHODS: We developed an "immunotumoroid" cell model system that recapitulates the tumor, its microenvironment, and necessary immune system components in patient-derived spheroids to enable ex vivo assessment of tumor response to ICI therapy. Immunotumoroids were developed from surgically resected renal cell carcinomas and bladder carcinomas selected for high tumor-infiltrating lymphocytes (TILs) and survived more than a month without media exchange. Immunohistochemistry was used to detect immune and non-immune cells in cryopreserved source tumors and the resulting immunotumoroids. Immunotumoroid response to ICIs (nivolumab, pembrolizumab, and durvalumab) and chemotherapy (cisplatin, gemcitabine, and paclitaxel) was monitored in real-time with Cytotox Red staining in an Incucyte device, and the immunotumoroid response was compared to retrospective clinical drug responses. RESULTS: Six of the 13 cases tested grew viable immunotumoroid models, with failed cases attributed to extensive tumor tissue necrosis or excess lymphocytes preventing spheroid formation. One successfully cultured case was excluded from the study due to low TIL infiltration (<5%) in the primary tumor sample. The five remaining models contained immune cells (CD4+ and CD8+ T cells, and macrophages), non-immune cells (fibroblasts), and tumor cells. Chemotherapy and ICI drugs were tested in immunotumoroids from 5 cases and compared to clinical outcomes where data was available. Four/five models showed cell killing in response to chemotherapy and two/five showed sensitivity to ICI. In three cases, the immunotumoroid model accurately predicted the patient's clinical response or non-response to ICIs or chemotherapy. CONCLUSION: Our immunotumoroid model replicated the multicellular nature of the tumor microenvironment sufficiently for preclinical ICI screening. This model could enable valuable insights into the complex interactions between cancer cells, the immune system, and the microenvironment. This is a feasibility study on a small number of cases, and additional studies with larger case numbers are required including correlation with clinical response.

摘要

背景:只有 20%的肾和膀胱癌患者对免疫检查点抑制剂(ICI)治疗有明显反应,目前尚无准确预测 ICI 反应的检测方法。

方法:我们开发了一种“免疫类器官”细胞模型系统,该系统可在患者来源的球体中重现肿瘤、其微环境和必要的免疫系统成分,从而能够体外评估肿瘤对 ICI 治疗的反应。免疫类器官是从手术切除的肾细胞癌和膀胱癌中开发的,这些肿瘤选择了高肿瘤浸润淋巴细胞(TIL),并且在没有介质交换的情况下存活了一个多月。免疫组化用于检测冷冻源肿瘤和由此产生的免疫类器官中免疫和非免疫细胞。在 Incucyte 设备中使用 Cytotox Red 染色实时监测免疫类器官对 ICI(nivolumab、pembrolizumab 和 durvalumab)和化疗(顺铂、吉西他滨和紫杉醇)的反应,并将免疫类器官的反应与回顾性临床药物反应进行比较。

结果:在测试的 13 例中,有 6 例成功培养出有活力的免疫类器官模型,失败的原因是肿瘤组织坏死广泛或过多的淋巴细胞阻止了球体的形成。由于原发性肿瘤样本中 TIL 浸润率(<5%)低,一个成功培养的病例被排除在研究之外。其余 5 个模型包含免疫细胞(CD4+和 CD8+T 细胞和巨噬细胞)、非免疫细胞(成纤维细胞)和肿瘤细胞。对来自 5 例的免疫类器官进行了化疗和 ICI 药物测试,并与可获得数据的临床结果进行了比较。在 4/5 例模型中,细胞对化疗有杀伤作用,在 2/5 例模型中,细胞对 ICI 敏感。在 3 例中,免疫类器官模型准确预测了患者对 ICI 或化疗的临床反应或无反应。

结论:我们的免疫类器官模型充分复制了肿瘤微环境的多细胞特性,足以进行 ICI 的临床前筛选。该模型可以为深入了解癌细胞、免疫系统和微环境之间的复杂相互作用提供有价值的见解。这是一项对少数病例进行的可行性研究,需要进行更多的包括与临床反应相关的包括更大病例数量的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/c52f9ed11242/fimmu-15-1356144-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/60319a6db9de/fimmu-15-1356144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/0bbea9747476/fimmu-15-1356144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/5d4baefdb057/fimmu-15-1356144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/f1798e7b8c8c/fimmu-15-1356144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/408ed6fcce7c/fimmu-15-1356144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/e10ead21a78c/fimmu-15-1356144-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/a0a15baaca27/fimmu-15-1356144-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/c52f9ed11242/fimmu-15-1356144-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/60319a6db9de/fimmu-15-1356144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/0bbea9747476/fimmu-15-1356144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/5d4baefdb057/fimmu-15-1356144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/f1798e7b8c8c/fimmu-15-1356144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/408ed6fcce7c/fimmu-15-1356144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/e10ead21a78c/fimmu-15-1356144-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/a0a15baaca27/fimmu-15-1356144-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/11007648/c52f9ed11242/fimmu-15-1356144-g008.jpg

相似文献

[1]
Evaluation of tumor response to immune checkpoint inhibitors by a 3D immunotumoroid model.

Front Immunol. 2024

[2]
CD8 lymphocytes in tumors and nonsynonymous mutational load correlate with prognosis of bladder cancer patients treated with immune checkpoint inhibitors.

Cancer Rep (Hoboken). 2018-6

[3]
Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer: A multiplex immunohistochemistry-based single-cell analysis.

Lung Cancer. 2022-12

[4]
Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors.

Front Immunol. 2022

[5]
TCF1PD-1 tumour-infiltrating lymphocytes predict a favorable response and prolonged survival after immune checkpoint inhibitor therapy for non-small-cell lung cancer.

Eur J Cancer. 2022-10

[6]
Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC.

JAMA Oncol. 2023-1-1

[7]
Expression and role of the immune checkpoint regulator PD-L1 in the tumor-stroma interplay of pancreatic ductal adenocarcinoma.

Front Immunol. 2023

[8]
Influence of Tumor Immune Infiltration on Immune Checkpoint Inhibitor Therapeutic Efficacy: A Computational Retrospective Study.

Front Immunol. 2021

[9]
Prediction of Benefit from Checkpoint Inhibitors in Mismatch Repair Deficient Metastatic Colorectal Cancer: Role of Tumor Infiltrating Lymphocytes.

Oncologist. 2020-6

[10]
Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers.

J Exp Clin Cancer Res. 2022-4-2

引用本文的文献

[1]
Multicenter study correlating molecular characteristics and clinical outcomes of cancer cases with patient-derived organoids.

J Exp Clin Cancer Res. 2025-7-2

[2]
Three-dimensional in vitro models in head and neck cancer: current trends and applications.

Med Oncol. 2025-5-5

本文引用的文献

[1]
Neoantigen-specific CD4 tumor-infiltrating lymphocytes are potent effectors identified within adoptive cell therapy products for metastatic melanoma patients.

J Immunother Cancer. 2023-10

[2]
Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers.

Mol Cancer. 2023-2-10

[3]
Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review.

Front Immunol. 2022

[4]
Hyperprogressive disease in patients suffering from solid malignancies treated by immune checkpoint inhibitors: A systematic review and meta-analysis.

Front Oncol. 2022-8-3

[5]
Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures.

Cancer Cell Int. 2022-4-29

[6]
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies.

J Exp Clin Cancer Res. 2022-2-19

[7]
Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.

Cancer Immunol Res. 2022-2

[8]
Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach.

Pharmacol Ther. 2022-3

[9]
Recruitment, Infiltration, and Cytotoxicity of HLA-Independent Killer Lymphocytes in Three-Dimensional Melanoma Models.

Cancers (Basel). 2021-5-11

[10]
Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy.

Sci Adv. 2021-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索