文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

早期主动脉瓣钙化的计算模型显示血流动力学生物标志物。

Computational Model for Early-Stage Aortic Valve Calcification Shows Hemodynamic Biomarkers.

作者信息

Mirza Asad, Hsu Chia-Pei Denise, Rodriguez Andres, Alvarez Paulina, Lou Lihua, Sey Matty, Agarwal Arvind, Ramaswamy Sharan, Hutcheson Joshua

机构信息

Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.

Department of Mechanical Engineering, Florida International University, Miami, FL 33174, USA.

出版信息

Bioengineering (Basel). 2024 Sep 24;11(10):955. doi: 10.3390/bioengineering11100955.


DOI:10.3390/bioengineering11100955
PMID:39451331
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11504039/
Abstract

Heart disease is a leading cause of mortality, with calcific aortic valve disease (CAVD) being the most prevalent subset. Being able to predict this disease in its early stages is important for monitoring patients before they need aortic valve replacement surgery. Thus, this study explored hydrodynamic, mechanical, and hemodynamic differences in healthy and very mildly calcified porcine small intestinal submucosa (PSIS) bioscaffold valves to determine any notable parameters between groups that could, possibly, be used for disease tracking purposes. Three valve groups were tested: raw PSIS as a control and two calcified groups that were seeded with human valvular interstitial and endothelial cells (VICs/VECs) and cultivated in calcifying media. These two calcified groups were cultured in either static or bioreactor-induced oscillatory flow conditions. Hydrodynamic assessments showed metrics were below thresholds associated for even mild calcification. Young's modulus, however, was significantly higher in calcified valves when compared to raw PSIS, indicating the morphological changes to the tissue structure. Fluid-structure interaction (FSI) simulations agreed well with hydrodynamic results and, most notably, showed a significant increase in time-averaged wall shear stress (TAWSS) between raw and calcified groups. We conclude that tracking hemodynamics may be a viable biomarker for early-stage CAVD tracking.

摘要

心脏病是主要的死亡原因,其中钙化性主动脉瓣疾病(CAVD)是最常见的类型。在患者需要进行主动脉瓣置换手术之前对其进行监测,能够在疾病早期预测这种疾病非常重要。因此,本研究探讨了健康和极轻度钙化的猪小肠黏膜下层(PSIS)生物支架瓣膜的流体动力学、力学和血流动力学差异,以确定两组之间可能用于疾病跟踪目的的任何显著参数。测试了三个瓣膜组:将未处理的PSIS作为对照,以及两个钙化组,这两个钙化组接种了人瓣膜间质细胞和内皮细胞(VICs/VECs)并在钙化培养基中培养。这两个钙化组分别在静态或生物反应器诱导的振荡流条件下培养。流体动力学评估显示,即使是轻度钙化相关的指标也低于阈值。然而,与未处理的PSIS相比,钙化瓣膜的杨氏模量显著更高,表明组织结构发生了形态学变化。流固耦合(FSI)模拟与流体动力学结果吻合良好,最显著的是,显示出未处理组和钙化组之间的时间平均壁面剪应力(TAWSS)显著增加。我们得出结论,跟踪血流动力学可能是早期CAVD跟踪的一个可行的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/46dadba1b176/bioengineering-11-00955-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/0ae2c5ea41ab/bioengineering-11-00955-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/93fcb7a85e91/bioengineering-11-00955-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/1902df659421/bioengineering-11-00955-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/2244745b6b53/bioengineering-11-00955-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/f9b4e07ad9ca/bioengineering-11-00955-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/bfac4f2a95ee/bioengineering-11-00955-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/46dadba1b176/bioengineering-11-00955-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/0ae2c5ea41ab/bioengineering-11-00955-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/93fcb7a85e91/bioengineering-11-00955-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/1902df659421/bioengineering-11-00955-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/2244745b6b53/bioengineering-11-00955-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/f9b4e07ad9ca/bioengineering-11-00955-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/bfac4f2a95ee/bioengineering-11-00955-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/11504039/46dadba1b176/bioengineering-11-00955-g007.jpg

相似文献

[1]
Computational Model for Early-Stage Aortic Valve Calcification Shows Hemodynamic Biomarkers.

Bioengineering (Basel). 2024-9-24

[2]
Hydrodynamic Assessment of Aortic Valves Prepared from Porcine Small Intestinal Submucosa.

Cardiovasc Eng Technol. 2017-3

[3]
Oxidative stress and valvular endothelial cells in aortic valve calcification.

Biomed Pharmacother. 2023-7

[4]
Human and porcine aortic valve endothelial and interstitial cell isolation and characterization.

Front Cardiovasc Med. 2023-6-20

[5]
Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.

Biomech Model Mechanobiol. 2012-9

[6]
Standardization of Human Calcific Aortic Valve Disease Modeling Reveals Passage-Dependent Calcification.

Front Cardiovasc Med. 2019-4-16

[7]
Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations.

Ann Biomed Eng. 2021-12

[8]
Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of HS lead to HS deficiency in calcific aortic valve disease.

Redox Biol. 2023-4

[9]
Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease.

Front Cardiovasc Med. 2022-3-9

[10]
MicroRNA-22 promoted osteogenic differentiation of valvular interstitial cells by inhibiting CAB39 expression during aortic valve calcification.

Cell Mol Life Sci. 2022-2-21

本文引用的文献

[1]
Aortic Valve Area and Strain Measurements by Cardiac MRI and Transthoracic Echocardiography in Severe Aortic Stenosis with Normal Left Ventricular Function.

Iran J Med Sci. 2023-7

[2]
Cardiac Virtual Noncontrast Images for Calcium Quantification with Photon-counting Detector CT.

Radiol Cardiothorac Imaging. 2023-6-22

[3]
Stem Cell-Secreted Allogeneic Elastin-Rich Matrix with Subsequent Decellularization for the Treatment of Critical Valve Diseases in the Young.

Bioengineering (Basel). 2022-10-20

[4]
Valve Endothelial Cell Exposure to High Levels of Flow Oscillations Exacerbates Valve Interstitial Cell Calcification.

Bioengineering (Basel). 2022-8-16

[5]
Ultra-High-Resolution Coronary CT Angiography for Assessment of Patients with Severe Coronary Artery Calcification: Initial Experience.

Radiol Cardiothorac Imaging. 2021-8-26

[6]
De Novo Valve Tissue Morphology Following Bioscaffold Mitral Valve Replacement in a Juvenile Non-Human Primate Model.

Bioengineering (Basel). 2021-7-16

[7]
Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study.

PLoS One. 2021

[8]
2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 2021-2-2

[9]
The role of stress concentration in calcified bicuspid aortic valve.

J R Soc Interface. 2020-6

[10]
Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017.

Circulation. 2020-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索