文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类钙化性主动脉瓣疾病模型的标准化揭示了通道依赖性钙化。

Standardization of Human Calcific Aortic Valve Disease Modeling Reveals Passage-Dependent Calcification.

作者信息

Goto Shinji, Rogers Maximillian A, Blaser Mark C, Higashi Hideyuki, Lee Lang H, Schlotter Florian, Body Simon C, Aikawa Masanori, Singh Sasha A, Aikawa Elena

机构信息

Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

出版信息

Front Cardiovasc Med. 2019 Apr 16;6:49. doi: 10.3389/fcvm.2019.00049. eCollection 2019.


DOI:10.3389/fcvm.2019.00049
PMID:31041314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6476921/
Abstract

Aortic valvular interstitial cells (VICs) isolated from patients undergoing valve replacement are commonly used as models of calcific aortic valve disease (CAVD). Standardization of VIC calcification, however, has not been implemented, which impairs comparison of results from different studies. We hypothesized that different culture methods impact the calcification phenotype of human VICs. We sought to identify the key parameters impacting calcification in primary human VICs to standardize CAVD research. Here we report that in calcification media containing organic phosphate, termed osteogenic media (OM), primary human VICs exhibited a passage-dependent decrease in calcification potential, which was not observed in calcification media containing inorganic phosphate, termed pro-calcifying media (PM). We used Alizarin red staining to compare the calcification potential of VICs cultured in OM and PM between the first and fourth passages after cell isolation from human CAVD tissues. Human VICs showed consistent Alizarin red stain when cultured with PM in a passage-independent manner. VICs cultured in OM did not exhibit consistent calcification potential between donors in early passages and consistently lacked positive Alizarin red stain in late passages. We performed whole cell, cytoplasmic and nuclear fractionation proteomics to identify factors regulating VIC passage-dependent calcification in OM. Proteomics cluster analysis identified tissue non-specific alkaline phosphatase (TNAP) as a regulator of passage-dependent calcification in OM. We verified an association of TNAP activity with calcification potential in VICs cultured in OM, but not in PM in which VICs calcified independent of TNAP activity. This study demonstrates that media culture conditions and cell passage impact the calcification potential of primary human VICs and should be taken into consideration in cell culture models of CAVD. Our results help standardize CAVD modeling as part of a greater effort to identify disease driving mechanisms and therapeutics for this unmet medical need.

摘要

从接受瓣膜置换手术的患者中分离出的主动脉瓣膜间质细胞(VICs)通常被用作钙化性主动脉瓣疾病(CAVD)的模型。然而,VIC钙化的标准化尚未实现,这影响了不同研究结果的比较。我们假设不同的培养方法会影响人VICs的钙化表型。我们试图确定影响原代人VICs钙化的关键参数,以规范CAVD研究。在此我们报告,在含有有机磷酸盐的钙化培养基(称为成骨培养基,OM)中,原代人VICs的钙化潜能呈现传代依赖性下降,而在含有无机磷酸盐的钙化培养基(称为促钙化培养基,PM)中未观察到这种情况。我们使用茜素红染色来比较从人CAVD组织分离细胞后,第一代和第四代在OM和PM中培养的VICs的钙化潜能。人VICs在与PM一起培养时,茜素红染色呈现传代无关的一致性。在OM中培养的VICs在早期传代时供体之间的钙化潜能不一致,在后期传代时始终缺乏阳性茜素红染色。我们进行了全细胞、细胞质和细胞核分级蛋白质组学分析,以确定调节OM中VIC传代依赖性钙化的因素。蛋白质组学聚类分析确定组织非特异性碱性磷酸酶(TNAP)是OM中传代依赖性钙化的调节因子。我们验证了TNAP活性与在OM中培养的VICs的钙化潜能相关,但在VICs钙化与TNAP活性无关的PM中则不然。本研究表明,培养基培养条件和细胞传代会影响原代人VICs的钙化潜能,在CAVD的细胞培养模型中应予以考虑。我们的结果有助于规范CAVD建模,作为识别这种未满足医疗需求的疾病驱动机制和治疗方法的更大努力的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/8d08fc610605/fcvm-06-00049-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/85d1e566dec1/fcvm-06-00049-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/3e76a62b5140/fcvm-06-00049-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/cba19dae3a03/fcvm-06-00049-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/5822cc4be028/fcvm-06-00049-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/6d0670f2a936/fcvm-06-00049-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/89cbc8648e2f/fcvm-06-00049-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/22a7a71705ef/fcvm-06-00049-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/698ebd26bc8e/fcvm-06-00049-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/8d08fc610605/fcvm-06-00049-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/85d1e566dec1/fcvm-06-00049-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/3e76a62b5140/fcvm-06-00049-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/cba19dae3a03/fcvm-06-00049-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/5822cc4be028/fcvm-06-00049-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/6d0670f2a936/fcvm-06-00049-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/89cbc8648e2f/fcvm-06-00049-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/22a7a71705ef/fcvm-06-00049-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/698ebd26bc8e/fcvm-06-00049-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383b/6476921/8d08fc610605/fcvm-06-00049-g0009.jpg

相似文献

[1]
Standardization of Human Calcific Aortic Valve Disease Modeling Reveals Passage-Dependent Calcification.

Front Cardiovasc Med. 2019-4-16

[2]
Radiation Induces Valvular Interstitial Cell Calcific Response in an Model of Calcific Aortic Valve Disease.

Front Cardiovasc Med. 2021-8-30

[3]
Andrographolide ameliorates aortic valve calcification by regulation of lipid biosynthesis and glycerolipid metabolism targeting MGLL expression in vitro and in vivo.

Cell Calcium. 2021-12

[4]
Human and porcine aortic valve endothelial and interstitial cell isolation and characterization.

Front Cardiovasc Med. 2023-6-20

[5]
Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.

Am J Physiol Heart Circ Physiol. 2020-9-28

[6]
MicroRNA-22 promoted osteogenic differentiation of valvular interstitial cells by inhibiting CAB39 expression during aortic valve calcification.

Cell Mol Life Sci. 2022-2-21

[7]
Sex-related differences in matrix remodeling and early osteogenic markers in aortic valvular interstitial cells.

Heart Vessels. 2017-2

[8]
Comparison of calcification potential of valvular interstitial cells isolated from individual aortic valve cusps.

Cardiovasc Pathol. 2016

[9]
Platelet membrane-coated alterbrassicene A nanoparticle inhibits calcification of the aortic valve by suppressing phosphorylation P65 NF-κB.

Theranostics. 2023

[10]
End stage renal disease-induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derived-matrix vesicles.

J Cell Physiol. 2017-11

引用本文的文献

[1]
Calcific aortic valve disease augments vesicular microRNA-145-5p to regulate the calcification of valvular interstitial cells via cellular crosstalk.

Basic Res Cardiol. 2025-8-22

[2]
In vitro model assesses the susceptibility of polymeric scaffolds for material-driven heart valve regeneration to calcification.

In Vitro Model. 2025-7-15

[3]
Bibliometric analysis of MXRA7 gene research trajectory: trends and insights (2015-2024).

Discov Oncol. 2025-6-3

[4]
Paeonol from attenuates calcification of aortic valvular interstitial cell by inhibiting activation of redox-sensitive NFκB/AKT/ERK1/2 pathway.

Food Sci Biotechnol. 2025-2-20

[5]
Calcific aortic stenosis: omics-based target discovery and therapy development.

Eur Heart J. 2025-2-14

[6]
Computational Model for Early-Stage Aortic Valve Calcification Shows Hemodynamic Biomarkers.

Bioengineering (Basel). 2024-9-24

[7]
Oxygenator assisted dynamic microphysiological culture elucidates the impact of hypoxia on valvular interstitial cell calcification.

J Biol Eng. 2024-8-23

[8]
Aortic valve cell microenvironment: Considerations for developing a valve-on-chip.

Biophys Rev (Melville). 2021-12-10

[9]
Models for calcific aortic valve disease in vivo and in vitro.

Cell Regen. 2024-3-1

[10]
Intracellular proteomics and extracellular vesiculomics as a metric of disease recapitulation in 3D-bioprinted aortic valve arrays.

Sci Adv. 2024-3

本文引用的文献

[1]
Genetic Association Analyses Highlight , , and As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis.

Circ Genom Precis Med. 2019-10-15

[2]
Kidney Dysfunction and the Risk of Developing Aortic Stenosis.

J Am Coll Cardiol. 2019-1-29

[3]
Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery.

Nat Rev Cardiol. 2019-5

[4]
Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells.

Front Physiol. 2018-11-20

[5]
XINA: A Workflow for the Integration of Multiplexed Proteomics Kinetics Data with Network Analysis.

J Proteome Res. 2018-10-29

[6]
Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease.

Atherosclerosis. 2018-8-25

[7]
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics.

Nanomaterials (Basel). 2018-5-3

[8]
Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease.

Circulation. 2018-7-24

[9]
Inhibition of enzymes involved in collagen cross-linking reduces vascular smooth muscle cell calcification.

FASEB J. 2018-3-16

[10]
Creation of disease-inspired biomaterial environments to mimic pathological events in early calcific aortic valve disease.

Proc Natl Acad Sci U S A. 2017-12-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索