Suppr超能文献

结合多种注意力机制的卷积神经网络用于腰椎管狭窄症的MRI分类

Convolutional Neural Network Incorporating Multiple Attention Mechanisms for MRI Classification of Lumbar Spinal Stenosis.

作者信息

Lin Juncai, Zhang Honglai, Shang Hongcai

机构信息

School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.

出版信息

Bioengineering (Basel). 2024 Oct 13;11(10):1021. doi: 10.3390/bioengineering11101021.

Abstract

BACKGROUND

Lumbar spinal stenosis (LSS) is a common cause of low back pain, especially in the elderly, and accurate diagnosis is critical for effective treatment. However, manual diagnosis using MRI images is time consuming and subjective, leading to a need for automated methods.

OBJECTIVE

This study aims to develop a convolutional neural network (CNN)-based deep learning model integrated with multiple attention mechanisms to improve the accuracy and robustness of LSS classification via MRI images.

METHODS

The proposed model is trained on a standardized MRI dataset sourced from multiple institutions, encompassing various lumbar degenerative conditions. During preprocessing, techniques such as image normalization and data augmentation are employed to enhance the model's performance. The network incorporates a Multi-Headed Self-Attention Module, a Slot Attention Module, and a Channel and Spatial Attention Module, each contributing to better feature extraction and classification.

RESULTS

The model achieved 95.2% classification accuracy, 94.7% precision, 94.3% recall, and 94.5% F1 score on the validation set. Ablation experiments confirmed the significant impact of the attention mechanisms in improving the model's classification capabilities.

CONCLUSION

The integration of multiple attention mechanisms enhances the model's ability to accurately classify LSS in MRI images, demonstrating its potential as a tool for automated diagnosis. This study paves the way for future research in applying attention mechanisms to the automated diagnosis of lumbar spinal stenosis and other complex spinal conditions.

摘要

背景

腰椎管狭窄症(LSS)是腰痛的常见原因,尤其是在老年人中,准确诊断对于有效治疗至关重要。然而,使用MRI图像进行人工诊断既耗时又主观,因此需要自动化方法。

目的

本研究旨在开发一种基于卷积神经网络(CNN)的深度学习模型,并集成多种注意力机制,以提高通过MRI图像进行LSS分类的准确性和鲁棒性。

方法

所提出的模型在来自多个机构的标准化MRI数据集上进行训练,该数据集涵盖各种腰椎退行性疾病。在预处理过程中,采用图像归一化和数据增强等技术来提高模型的性能。该网络包含一个多头自注意力模块、一个插槽注意力模块以及一个通道和空间注意力模块,每个模块都有助于更好地进行特征提取和分类。

结果

该模型在验证集上的分类准确率达到95.2%,精确率为94.7%,召回率为94.3%,F1分数为94.5%。消融实验证实了注意力机制对提高模型分类能力的显著影响。

结论

多种注意力机制的整合增强了模型在MRI图像中准确分类LSS的能力,证明了其作为自动化诊断工具的潜力。本研究为未来将注意力机制应用于腰椎管狭窄症及其他复杂脊柱疾病的自动化诊断研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c1/11504910/1282e4912642/bioengineering-11-01021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验