Suppr超能文献

评估手术室调度问题中稳健性水平的影响。

Evaluating the Impact of the Level of Robustness in Operating Room Scheduling Problems.

作者信息

Addis Bernardetta, Carello Giuliana, Tanfani Elena

机构信息

Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France.

Department of Electronics, Politecnico di Milano, Information and Bioengineering, 20133 Milano, Italy.

出版信息

Healthcare (Basel). 2024 Oct 11;12(20):2023. doi: 10.3390/healthcare12202023.

Abstract

Managing uncertainty in surgery times presents a critical challenge in operating room (OR) scheduling, as it can have a significant impact on patient care and hospital efficiency. By incorporating robustness into the decision-making process, we can provide a more reliable and adaptive solution compared to traditional deterministic approaches. In this paper, we consider a cardinality-constrained robust optimization model for OR scheduling, addressing uncertain surgery durations. By accounting for patient waiting times, urgency levels and delay penalties in the objective function, our model aims to optimise patient-centred outcomes while ensuring operational resilience. However, to achieve an appropriate balance between resilience and robustness cost, the robustness level must be carefully tuned. In this paper, we conduct a comprehensive analysis of the model's performance, assessing its sensitivity to robustness levels and its ability to handle different uncertainty scenarios. Our results show significant improvements in patient outcomes, including reduced waiting times, fewer missed surgeries and improved prioritisation of urgent cases. Key contributions of this research include an evaluation of the representativeness and performance of the patient-centred objective function, a comprehensive analysis of the impact of robustness parameters on OR scheduling performance, and insights into the impact of different robustness levels. This research offers healthcare providers a pathway to increase operational efficiency, improve patient satisfaction, and mitigate the negative effects of uncertainty in OR scheduling.

摘要

应对手术时间的不确定性是手术室排班中的一项关键挑战,因为它会对患者护理和医院效率产生重大影响。通过将稳健性纳入决策过程,与传统的确定性方法相比,我们可以提供更可靠、更具适应性的解决方案。在本文中,我们考虑了一种用于手术室排班的基数约束稳健优化模型,以应对不确定的手术时长。通过在目标函数中考虑患者等待时间、紧急程度和延误惩罚,我们的模型旨在优化以患者为中心的结果,同时确保运营弹性。然而,为了在弹性和稳健性成本之间实现适当平衡,必须仔细调整稳健性水平。在本文中,我们对模型的性能进行了全面分析,评估其对稳健性水平的敏感性以及处理不同不确定性场景的能力。我们的结果表明,患者结果有显著改善,包括等待时间缩短、手术错过次数减少以及紧急病例的优先级提高。这项研究的主要贡献包括对以患者为中心的目标函数的代表性和性能进行评估,对稳健性参数对手术室排班性能的影响进行全面分析,以及对不同稳健性水平的影响的见解。这项研究为医疗保健提供者提供了一条提高运营效率、改善患者满意度以及减轻手术室排班中不确定性负面影响的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15fd/11507990/25afb995efa7/healthcare-12-02023-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验