Suppr超能文献

表面形态和内部结构对来自……的蛇鳞摩擦学行为的影响

Effect of Surface Morphology and Internal Structure on the Tribological Behaviors of Snake Scales from .

作者信息

Shi Ge, Wang Jinhao, Dong Yuehua, Hu Song, Zheng Long, Ren Luquan

机构信息

Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China.

Weihai Institute for Bionics, Jilin University, Weihai 264402, China.

出版信息

Biomimetics (Basel). 2024 Oct 11;9(10):617. doi: 10.3390/biomimetics9100617.

Abstract

Snakes can move freely on land, in lakes, and in other environments. During movement, the scales are in long-term contact with the external environment, providing protection to the body. In this study, we evaluated the mechanical properties and scratching performance of the ventral and dorsal scales from , a generalist species that moves on both land and in streams under wet and dry conditions. The results showed that the elastic modulus and hardness of the dry scales were greater than those of the wet scales. The average scale friction coefficient under wet conditions (0.1588) was 9.3% greater than that under dry conditions (0.1453). The scales exhibit brittle damage in dry environments, while in wet environments, ductile damage is observed. This adaptation mechanism allows the scales to protect the body by dissipating energy and reducing stress concentration, ensuring efficient locomotion and durability in both terrestrial and aquatic environments. Understanding how this biomaterial adapts to environmental changes can inspire the development of bionic materials.

摘要

蛇可以在陆地、湖泊和其他环境中自由移动。在移动过程中,鳞片长期与外部环境接触,为身体提供保护。在本研究中,我们评估了一种在干湿条件下均可在陆地和溪流中移动的广适性物种的腹侧和背侧鳞片的力学性能和刮擦性能。结果表明,干燥鳞片的弹性模量和硬度大于湿润鳞片。湿润条件下的平均鳞片摩擦系数(0.1588)比干燥条件下(0.1453)高9.3%。鳞片在干燥环境中表现出脆性损伤,而在湿润环境中则观察到韧性损伤。这种适应机制使鳞片能够通过耗散能量和降低应力集中来保护身体,确保在陆地和水生环境中都能高效移动并具有耐久性。了解这种生物材料如何适应环境变化能够启发仿生材料的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9538/11506616/d6da20e73a18/biomimetics-09-00617-g001.jpg

相似文献

1
Effect of Surface Morphology and Internal Structure on the Tribological Behaviors of Snake Scales from .
Biomimetics (Basel). 2024 Oct 11;9(10):617. doi: 10.3390/biomimetics9100617.
3
Effects of surface morphology and chemical composition on friction properties of Xenopeltis hainanensis scales.
J Mech Behav Biomed Mater. 2024 Dec;160:106786. doi: 10.1016/j.jmbbm.2024.106786. Epub 2024 Oct 24.
4
Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.
Mater Sci Eng C Mater Biol Appl. 2016 May;62:643-55. doi: 10.1016/j.msec.2016.02.014.
5
Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants.
J Mech Behav Biomed Mater. 2019 Feb;90:460-471. doi: 10.1016/j.jmbbm.2018.10.031. Epub 2018 Oct 29.
7
Surviving the surf: the tribomechanical properties of the periostracum of Mytilus sp.
Acta Biomater. 2014 Sep;10(9):3978-85. doi: 10.1016/j.actbio.2014.05.014. Epub 2014 May 23.
8
Mitochondrial genome of Dinodon rufozonatum (Squamata: Colubridae: Dinodon).
Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(2):970-1. doi: 10.3109/19401736.2014.926510. Epub 2014 Jun 17.
9
Bio-inspired scale-like surface textures and their tribological properties.
Bioinspir Biomim. 2015 Jun 30;10(4):044001. doi: 10.1088/1748-3190/10/4/044001.
10
Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Mar;195(3):311-8. doi: 10.1007/s00359-008-0408-1. Epub 2009 Jan 10.

本文引用的文献

1
EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration.
Sci Robot. 2024 Mar 13;9(88):eadh8332. doi: 10.1126/scirobotics.adh8332.
2
Hierarchically structured bioinspired nanocomposites.
Nat Mater. 2023 Jan;22(1):18-35. doi: 10.1038/s41563-022-01384-1. Epub 2022 Nov 28.
3
Fracture behaviour and toughening mechanisms of dry and wet collagen.
Acta Biomater. 2022 Apr 1;142:174-184. doi: 10.1016/j.actbio.2022.02.001. Epub 2022 Feb 5.
4
Functional consequences of convergently evolved microscopic skin features on snake locomotion.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018264118.
5
Dry vs. wet: Properties and performance of collagen films. Part I. Mechanical behaviour and strain-rate effect.
J Mech Behav Biomed Mater. 2020 Nov;111:103983. doi: 10.1016/j.jmbbm.2020.103983. Epub 2020 Aug 6.
6
Mitigating memory effects during undulatory locomotion on hysteretic materials.
Elife. 2020 Jun 24;9:e51412. doi: 10.7554/eLife.51412.
7
What Defines Different Modes of Snake Locomotion?
Integr Comp Biol. 2020 Jul 1;60(1):156-170. doi: 10.1093/icb/icaa017.
8
Interfibril hydrogen bonding improves the strain-rate response of natural armour.
J R Soc Interface. 2019 Jan 31;16(150):20180775. doi: 10.1098/rsif.2018.0775.
9
Designed for resistance to puncture: The dynamic response of fish scales.
J Mech Behav Biomed Mater. 2019 Feb;90:451-459. doi: 10.1016/j.jmbbm.2018.10.037. Epub 2018 Nov 2.
10
High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers.
Nat Commun. 2018 Oct 5;9(1):4090. doi: 10.1038/s41467-018-06576-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验