Suppr超能文献

使用主成分分析评估高光谱成像显微镜的聚焦度量

Evaluation of Focus Measures for Hyperspectral Imaging Microscopy Using Principal Component Analysis.

作者信息

Nasibov Humbat

机构信息

National Metrology Institute, The Scientific and Technological Research Council of Türkiye (TÜBİTAK-UME, Ulusal Metroloji Enstitüsü), Kocaeli 41470, Türkiye.

出版信息

J Imaging. 2024 Sep 26;10(10):240. doi: 10.3390/jimaging10100240.

Abstract

An automatic focusing system is a crucial component of automated microscopes, adjusting the lens-to-object distance to find the optimal focus by maximizing the focus measure (FM) value. This study develops reliable autofocus methods for hyperspectral imaging microscope systems, essential for extracting accurate chemical and spatial information from hyperspectral datacubes. Since FMs are domain- and application-specific, commonly, their performance is evaluated using verified focus positions. For example, in optical microscopy, the sharpness/contrast of visual peculiarities of a sample under testing typically guides as an anchor to determine the best focus position, but this approach is challenging in hyperspectral imaging systems (HSISs), where instant two-dimensional hyperspectral images do not always possess human-comprehensible visual information. To address this, a principal component analysis (PCA) was used to define the optimal ("ideal") optical focus position in HSIS, providing a benchmark for assessing 22 FMs commonly used in other imaging fields. Evaluations utilized hyperspectral images from visible (400-1100 nm) and near-infrared (900-1700 nm) bands across four different HSIS setups with varying magnifications. Results indicate that gradient-based FMs are the fastest and most reliable operators in this context.

摘要

自动聚焦系统是自动显微镜的关键组件,它通过调整镜头与物体之间的距离,以最大化聚焦度量(FM)值来找到最佳焦点。本研究为高光谱成像显微镜系统开发了可靠的自动聚焦方法,这对于从高光谱数据立方体中提取准确的化学和空间信息至关重要。由于聚焦度量是特定领域和应用的,通常使用经过验证的焦点位置来评估它们的性能。例如,在光学显微镜中,被测样品视觉特征的清晰度/对比度通常作为确定最佳焦点位置的依据,但这种方法在高光谱成像系统(HSIS)中具有挑战性,因为即时二维高光谱图像并不总是具有人类可理解的视觉信息。为了解决这个问题,主成分分析(PCA)被用于定义HSIS中的最佳(“理想”)光学焦点位置,为评估其他成像领域常用的22种聚焦度量提供了基准。评估使用了来自四个不同放大倍数的HSIS设置的可见(400 - 1100 nm)和近红外(900 - 1700 nm)波段的高光谱图像。结果表明,在这种情况下,基于梯度的聚焦度量是最快且最可靠的算子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89cd/11508558/314bd7396ad0/jimaging-10-00240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验