Elancheziyan Mari, Singh Manisha, Won Keehoon
Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
Nanomaterials (Basel). 2024 Oct 15;14(20):1655. doi: 10.3390/nano14201655.
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based on a disposable integrated screen-printed carbon electrode (SPCE) coated with gold nanoparticle-embedded thiol-functionalized TiCT MXene (AuNPs-S-TiCT MXene) for simple, rapid, precise, and sensitive quantification of CIPF in milk and water samples. The high surface area and electrical conductivity of AuNPs are maximized thanks to the strong interaction between AuNPs and SH-TiCT MXene, which can prevent the aggregation of AuNPs and endow larger electroactive areas. TiCT MXene was synthesized from TiAlC MAX phases, and its thiol functionalization was achieved using 3-mercaptopropyl trimethoxysilane. The prepared AuNPs-S-TiCT MXene nanocomposite was characterized using FESEM, EDS, XRD, XPS, FTIR, and UV-visible spectroscopy. The electrochemical behavior of the nanocomposite was examined using CV, EIS, DPV, and LSV. The AuNPs-S-TiCT MXene/SPCE showed higher electrochemical performances towards CIPF oxidation than a conventional AuNPs-TiCT MXene/SPCE. Under the optimized DPV and LSV conditions, the developed nonenzymatic CIPF sensor displayed a wide range of detection concentrations from 0.50 to 143 μM (DPV) and from 0.99 to 206 μM (LSV) with low detection limits of 0.124 μM (DPV) and 0.171 μM (LSV), and high sensitivities of 0.0863 μA/μM (DPV) and 0.2182 μA/μM (LSV).
环丙沙星(CIPF)的无节制使用导致患者耐药性增加,并引发了消化紊乱、肾脏疾病和肝脏并发症等问题,威胁到人类健康。为了解决这些问题,本研究介绍了一种基于一次性集成丝网印刷碳电极(SPCE)的便携式电化学传感器,该电极涂有嵌入金纳米颗粒的硫醇功能化TiCT MXene(AuNPs-S-TiCT MXene),用于简单、快速、精确和灵敏地定量检测牛奶和水样中的CIPF。由于AuNPs与SH-TiCT MXene之间的强相互作用,AuNPs的高比表面积和电导率得以最大化,这可以防止AuNPs聚集并赋予更大的电活性面积。TiCT MXene由TiAlC MAX相合成,其硫醇功能化通过3-巯基丙基三甲氧基硅烷实现。使用场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FTIR)和紫外可见光谱仪对制备的AuNPs-S-TiCT MXene纳米复合材料进行了表征。使用循环伏安法(CV)、电化学阻抗谱(EIS)、差分脉冲伏安法(DPV)和线性扫描伏安法(LSV)研究了该纳米复合材料的电化学行为。与传统的AuNPs-TiCT MXene/SPCE相比,AuNPs-S-TiCT MXene/SPCE对CIPF氧化表现出更高的电化学性能。在优化的DPV和LSV条件下,所开发的非酶CIPF传感器的检测浓度范围广泛,DPV法为0.50至143μM,LSV法为0.99至206μM,检测限低,DPV法为0.124μM,LSV法为0.171μM,灵敏度高,DPV法为0.0863μA/μM,LSV法为0.2182μA/μM。