College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
Tomography. 2024 Oct 10;10(10):1676-1693. doi: 10.3390/tomography10100123.
Accurate assessment of N staging in patients with non-small cell lung cancer (NSCLC) is critical for the development of effective treatment plans, the optimization of therapeutic strategies, and the enhancement of patient survival rates. This study proposes a hybrid model based on 3D convolutional neural networks (CNNs) and transformers for predicting the N-staging and survival rates of NSCLC patients within the NSCLC radiogenomics and Nsclc-radiomics datasets. The model achieved accuracies of 0.805, 0.828, and 0.819 for the training, validation, and testing sets, respectively. By leveraging the strengths of CNNs in local feature extraction and the superior performance of transformers in global information modeling, the model significantly enhances predictive accuracy and efficacy. A comparative analysis with traditional CNN and transformer architectures demonstrates that the CNN-transformer hybrid model outperforms N-staging predictions. Furthermore, this study extracts the one-year survival rate as a feature and employs the Lasso-Cox model for survival predictions at various time intervals (1, 3, 5, and 7 years), with all survival prediction -values being less than 0.05, illustrating the time-dependent nature of survival analysis. The application of time-dependent ROC curves further validates the model's accuracy and reliability for survival predictions. Overall, this research provides innovative methodologies and new insights for the early diagnosis and prognostic evaluation of NSCLC.
准确评估非小细胞肺癌(NSCLC)的 N 分期对于制定有效的治疗计划、优化治疗策略以及提高患者生存率至关重要。本研究提出了一种基于 3D 卷积神经网络(CNN)和转换器的混合模型,用于预测 NSCLC 放射基因组学和 NSCLC-radiomics 数据集内 NSCLC 患者的 N 分期和生存率。该模型在训练、验证和测试集上的准确率分别为 0.805、0.828 和 0.819。通过利用 CNN 在局部特征提取方面的优势和转换器在全局信息建模方面的卓越性能,该模型显著提高了预测的准确性和效果。与传统的 CNN 和转换器架构的比较分析表明,CNN-Transformer 混合模型在 N 分期预测方面表现出色。此外,本研究提取了一年生存率作为特征,并使用 Lasso-Cox 模型对不同时间间隔(1、3、5 和 7 年)的生存率进行预测,所有生存预测值均小于 0.05,这表明生存分析具有时间依赖性。时间依赖性 ROC 曲线的应用进一步验证了该模型对生存率预测的准确性和可靠性。总的来说,本研究为 NSCLC 的早期诊断和预后评估提供了创新的方法和新的见解。