Suppr超能文献

两样本汇总数据孟德尔随机化中修正的有偏倒数方差加权估计量。

A Modified Debiased Inverse-Variance Weighted Estimator in Two-Sample Summary-Data Mendelian Randomization.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

出版信息

Stat Med. 2024 Dec 20;43(29):5484-5496. doi: 10.1002/sim.10245. Epub 2024 Oct 25.

Abstract

Mendelian randomization uses genetic variants as instrumental variables to estimate the causal effect of exposure on outcome from observational data. A common challenge in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the exposure of interest, a setting known as many weak instruments. Conventional methods, such as the popular inverse-variance weighted (IVW) estimator, could be heavily biased toward zero when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator and the penalized IVW (pIVW) estimator, which are shown to be robust to many weak instruments, were recently proposed. However, we find that the dIVW estimator tends to produce an exaggerated estimate of the causal effect, especially when the effective sample size is small. Although the pIVW estimator has better statistical properties, it is slightly more complex, and the idea behind this method is also a bit less intuitive. Therefore, we propose a modified debiased IVW (mdIVW) estimator that directly multiplies a shrinkage factor with the original dIVW estimator. After this simple modification, we prove that the mdIVW estimator not only has second-order bias with respect to the effective sample size, but also has smaller variance and mean squared error than the preceding two estimators. We then extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the competing ones through extensive simulation studies and real data analysis.

摘要

孟德尔随机化使用遗传变异作为工具变量,根据观察性数据估计暴露对结局的因果效应。孟德尔随机化的一个常见挑战是,许多遗传变异与感兴趣的暴露仅有适度或甚至微弱的关联,这种情况被称为多个弱工具。当工具强度较弱时,传统方法(如流行的逆方差加权(IVW)估计量)可能会严重偏向于零。为了解决这个问题,最近提出了无偏 IVW(dIVW)估计量和惩罚 IVW(pIVW)估计量,它们被证明对多个弱工具具有稳健性。然而,我们发现 dIVW 估计量往往会产生因果效应的夸大估计,尤其是在有效样本量较小时。虽然 pIVW 估计量具有更好的统计性质,但它稍微复杂一些,并且该方法背后的思路也不太直观。因此,我们提出了一种改进的无偏 IVW(mdIVW)估计量,该估计量直接用收缩因子乘以原始的 dIVW 估计量。经过这个简单的修改,我们证明了 mdIVW 估计量不仅对有效样本量具有二阶偏差,而且具有比前两个估计量更小的方差和均方误差。然后,我们将提出的方法扩展到考虑工具变量选择和平衡水平多效性的情况。我们通过广泛的模拟研究和真实数据分析,证明了 mdIVW 估计量相对于竞争方法的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验