Suppr超能文献

电场通过排列活性位点片段轨道来赋予酶反应性。

Electric fields imbue enzyme reactivity by aligning active site fragment orbitals.

机构信息

Chemistry Department, Colorado School of Mines, Golden, CO 80401.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2411976121. doi: 10.1073/pnas.2411976121. Epub 2024 Oct 25.

Abstract

It is broadly recognized that intramolecular electric fields, produced by the protein scaffold and acting on the active site, facilitate enzymatic catalysis. This field effect can be described by several theoretical models, each of which is intuitive to varying degrees. In this contribution, we show that a fundamental effect of electric fields is to generate electrostatic potentials that facilitate the energetic alignment of reactant frontier orbitals. We apply this model to demystify the impact of electric fields on high-valent iron-oxo heme proteins: catalases, peroxidases, and peroxygenases/monooxygenases. Specifically, we show that this model easily accounts for the observed field-induced changes to the spin distribution within peroxidase active sites and explains the transition between epoxidation and hydroxylation pathways seen in Cytochrome P450 active site models. Thus, for the intuitive interpretation of the chemical effect of the field, the strategy involves analyzing the response of the orbitals of active site fragments, and their energetic alignment. We note that the energy difference between fragment orbitals involved in charge redistribution acts as a measure for the chemical hardness/softness of the reactive complex. This measure, and its sensitivity to electric fields, offers a single parameter model from which to quantitatively assess the effects of electric fields on reactivity and selectivity. Thus, the model provides an additional perspective to describe electrostatic preorganization and offers ways for its manipulation.

摘要

人们普遍认为,蛋白质支架产生的分子内电场作用于活性部位,促进了酶的催化作用。这种电场效应可以用几种理论模型来描述,每个模型在不同程度上都具有直观性。在本研究中,我们表明电场的一个基本作用是产生静电势,从而促进反应物前线轨道的能量排列。我们应用这一模型来揭示电场对高价铁氧血红素蛋白(过氧化氢酶、过氧化物酶和过氧合酶/单加氧酶)的影响。具体来说,我们表明,该模型可以很容易地解释过氧化物酶活性部位中观察到的场诱导自旋分布变化,并解释细胞色素 P450 活性部位模型中观察到的环氧化和羟化途径之间的转变。因此,为了直观地解释电场的化学效应,该策略涉及分析活性部位片段的轨道响应及其能量排列。我们注意到,参与电荷重分布的片段轨道之间的能量差可作为反应性络合物的化学硬度/软度的度量。该度量及其对电场的敏感性提供了一个定量评估电场对反应性和选择性影响的单参数模型。因此,该模型提供了另一种描述静电预组织的方法,并为其操纵提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b99/11536135/6ebb173ec23d/pnas.2411976121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验