Ueyama Masahito, Iwata Hiroki, Nagano Hirohiko, Kukuu Naoki, Harazono Yoshinobu
Department of Environmental Sciences and Technology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan.
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2414539121. doi: 10.1073/pnas.2414539121. Epub 2024 Oct 25.
At the northern high latitudes, rapid warming, associated changes in the hydrological cycle, and rising atmospheric CO concentrations, [CO], are observed at present. Under rapid environmental changes, it is important to understand the current and future trajectories of the CO budget in high-latitude ecosystems. In this study, we present the importance of anomalous wet conditions and rising [CO] on the long-term CO budget based on two decades (2003-2022) of quasicontinuous measurements of CO flux at a poorly drained black spruce forest on permafrost peat in interior Alaska. The long-term CO budget for the black spruce forest was a small sink of -53 ± 63 g C m y. The CO sink increased from 49 g C m y for the first decade to 58 g C m y for the second decade. The increased CO sink was attributed to an 11.3% increase in gross primary productivity (GPP) among which 9% increase in GPP was explained by a recent increase in precipitation. Furthermore, a 3% increase in GPP in response to a 37-ppm increase in [CO] was estimated from the data-model fusion. Our study shows that understanding the coupling between hydrological and carbon cycles and the CO fertilization effect is important for understanding the current and future carbon budgets of high-latitude ecosystems in permafrost regions.
目前在北半球高纬度地区,观测到了快速变暖、水文循环的相关变化以及大气中二氧化碳([CO₂])浓度的上升。在快速的环境变化下,了解高纬度生态系统中二氧化碳收支的当前和未来轨迹非常重要。在本研究中,基于对阿拉斯加内陆多年冻土泥炭地上排水不良的黑云杉林20年(2003 - 2022年)的二氧化碳通量准连续测量,我们展示了异常湿润条件和上升的[CO₂]对长期二氧化碳收支的重要性。黑云杉林的长期二氧化碳收支是一个较小的汇,为-53 ± 63克碳/平方米/年。二氧化碳汇从第一个十年的49克碳/平方米/年增加到第二个十年的58克碳/平方米/年。二氧化碳汇的增加归因于总初级生产力(GPP)增长了11.3%,其中GPP增长的9%可由近期降水量的增加来解释。此外,通过数据 - 模型融合估计,[CO₂]增加37 ppm会使GPP增加3%。我们的研究表明,了解水文循环与碳循环之间的耦合以及二氧化碳施肥效应对于理解多年冻土地区高纬度生态系统当前和未来的碳收支至关重要。