Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
Sci Adv. 2024 Oct 25;10(43):eado5042. doi: 10.1126/sciadv.ado5042.
Precise and efficient delivery of macromolecules into cells enhances basic biology research and therapeutic applications in cell therapies, drug delivery, and personalized medicine. While pulsed electric field electroporation effectively permeabilizes cell membranes to deliver payloads without the need for toxic chemical or viral transduction agents, conventional bulk electroporation devices face major challenges with cell viability and heterogeneity due to variations in fields generated across cells and electrochemistry at the electrode-electrolyte interface. Here, we introduce the use of microfabricated electrodes based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), which substantially increases cell viability and transfection efficiency. As a proof of concept, we demonstrate the enhanced delivery of Cas9 protein, guide RNA, and plasmid DNA into cell lines and primary cells. This use of PEDOT:PSS enables rapid modification of difficult-to-transfect cell types to accelerate their study and use as therapeutic platforms.
精确高效地将大分子递送到细胞内,可以增强基础生物学研究,并在细胞治疗、药物输送和个性化医疗等治疗应用中发挥作用。电穿孔技术通过施加短时间的电脉冲来暂时增加细胞膜的通透性,从而将有效载荷递送到细胞内,而无需使用有毒的化学试剂或病毒转导剂。然而,传统的 bulk 电穿孔设备由于细胞间产生的场的变化以及电极-电解质界面处的电化学等因素,在细胞活力和异质性方面面临着重大挑战。在这里,我们引入了使用基于聚(3,4-亚乙基二氧噻吩)掺杂聚苯乙烯磺酸盐(PEDOT:PSS)的微制造电极,这大大提高了细胞活力和转染效率。作为概念验证,我们展示了 Cas9 蛋白、向导 RNA 和质粒 DNA 递送到细胞系和原代细胞中的增强效果。PEDOT:PSS 的这种使用可以加速难以转染的细胞类型的快速修饰,从而加速它们的研究和作为治疗平台的使用。