Morgenthaler Eva C, Ribbe Alexander E, Bradley Laura C, Emrick Todd
Polymer Science & Engineering Department, 120 Governors Drive, University of Massachusetts, Amherst, MA, 01003.
Polymer Science & Engineering Department, 120 Governors Drive, University of Massachusetts, Amherst, MA, 01003.
J Colloid Interface Sci. 2025 Feb;679(Pt B):276-283. doi: 10.1016/j.jcis.2024.10.040. Epub 2024 Oct 10.
While free radical polymerization methods are employed frequently to prepare sub-micron polymer particles, we hypothesized that surfactant-free emulsion polymerization (SFEP) methodology may prove beneficial for obtaining functional polymer particles by solution polymerization methods that preclude the need for conventional surfactants. To test the effectiveness of SFEP for the preparation of functional colloids, solution polymerization of several monomers, including propargyl acrylate (PA), styrene (Sty) and tert-butyl acrylate (t-BA), was performed over a range of monomer ratios and reaction scales. Electron microscopy and infrared spectroscopy were employed to evaluate the outcome of SFEP for particle size, shape, surface anisotropy, and chemical composition. Combining this characterization with optimized SFEP synthesis, we found that spherical polymer particles-homopolymers of PA as well as copolymers-were obtained in the 60-300 nm diameter size range. Successful inclusion of PA enabled the use of the particles in copper-catalyzed azide-alkyne cycloaddition reactions (CuAAc). Moreover, electron microscopy characterization with backscattering revealed chemical and shape anisotropies on copolymer particles indicative of monomer phase-separation during particle formation. Overall, the SFEP methodology represents a straightforward, one-pot, bottom-up approach to yield a library of functional polymer particles, while avoiding undesirable aspects associated with conventional surfactants.
虽然自由基聚合法经常用于制备亚微米级聚合物颗粒,但我们推测,无表面活性剂乳液聚合(SFEP)方法可能有助于通过溶液聚合法获得功能性聚合物颗粒,该方法无需使用传统表面活性剂。为了测试SFEP制备功能性胶体的有效性,我们在一系列单体比例和反应规模下,对包括丙烯酸炔丙酯(PA)、苯乙烯(Sty)和丙烯酸叔丁酯(t-BA)在内的几种单体进行了溶液聚合。采用电子显微镜和红外光谱来评估SFEP在粒径、形状、表面各向异性和化学成分方面的结果。将这种表征与优化的SFEP合成相结合,我们发现获得了直径在60 - 300 nm范围内的球形聚合物颗粒——PA的均聚物以及共聚物。成功引入PA使得这些颗粒能够用于铜催化的叠氮化物-炔烃环加成反应(CuAAc)。此外,背散射电子显微镜表征显示共聚物颗粒上存在化学和形状各向异性,这表明在颗粒形成过程中单体发生了相分离。总体而言,SFEP方法是一种直接的、一锅法的自下而上的方法,可生成一系列功能性聚合物颗粒,同时避免了与传统表面活性剂相关的不良方面。