Suppr超能文献

利用高光谱成像和先进预处理技术增强法医血液检测

Enhancing forensic blood detection using hyperspectral imaging and advanced preprocessing techniques.

作者信息

Al-Alimi Dalal, Al-Qaness Mohammed A A

机构信息

Department of Information Technology, Gulf Colleges, Hafr Al-Batin, 2600, Saudi Arabia; Faculty of Engineering, Sana'a University, Sana'a, 12544, Yemen.

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China; College of Engineering and Information Technology, Emirates International University, Sana'a, 16881, Yemen.

出版信息

Talanta. 2025 Feb 1;283:127097. doi: 10.1016/j.talanta.2024.127097. Epub 2024 Oct 22.

Abstract

Bloodstains are pivotal in forensic investigations as they can provide crucial DNA information about individuals involved in a crime. Traditional methods for bloodstain detection, including chemical tests and forensic lights, have limitations such as non-specificity to human blood and susceptibility to false positives. In forensic blood detection, molecular spectroscopy is crucial for identifying the unique spectral fingerprints of blood, which arise from its molecular composition. Hyperspectral imaging (HSI) leverages this principle by capturing a wide spectrum of light for each pixel in an image, allowing for the detailed analysis of various substances. HSI has emerged as a promising alternative, offering non-contact, rapid, and cost-effective detection of bloodstains by analyzing the visible and near-infrared electromagnetic spectrum. This study explores the application of HSI for blood detection, addressing challenges such as spectral mixing, time-related changes in bloodstain spectra, and data complexity. The study introduces a novel framework to optimize HSI data, enhancing the accuracy and efficiency of bloodstain classification, called the Fast Extraction (FE) framework. It includes two stages. The main method in the first one is the Enhancing Transformation Reduction (ETR) method to reduce the dimension and complexity of the HSI. The second stage contains a compatible classification model to enhance feature extraction and classification. Our approach is validated using the HyperBlood datasets and many evaluation methods, demonstrating superior performance compared to state-of-the-art deep learning models. It provides high accuracy (97%-100 %) for all HSIs, overcoming various difficulties and blood collection times.

摘要

血迹在法医调查中至关重要,因为它们可以提供有关犯罪涉案人员的关键DNA信息。传统的血迹检测方法,包括化学测试和法医灯,存在局限性,如对人血缺乏特异性以及容易出现假阳性。在法医血液检测中,分子光谱对于识别血液独特的光谱指纹至关重要,这些指纹源于其分子组成。高光谱成像(HSI)利用这一原理,通过为图像中的每个像素捕获广泛的光谱,从而能够对各种物质进行详细分析。HSI已成为一种有前景的替代方法,通过分析可见和近红外电磁光谱,提供非接触、快速且经济高效的血迹检测。本研究探讨了HSI在血液检测中的应用,解决了诸如光谱混合、血迹光谱随时间的变化以及数据复杂性等挑战。该研究引入了一种优化HSI数据的新框架,提高了血迹分类的准确性和效率,称为快速提取(FE)框架。它包括两个阶段。第一个阶段的主要方法是增强变换约简(ETR)方法,以降低HSI的维度和复杂性。第二阶段包含一个兼容的分类模型,以增强特征提取和分类。我们的方法使用HyperBlood数据集和许多评估方法进行了验证,与最先进的深度学习模型相比表现出卓越的性能。它为所有HSI提供了高精度(97%-100%),克服了各种困难和采血时间的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验