Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
Biomater Adv. 2025 Jan;166:214081. doi: 10.1016/j.bioadv.2024.214081. Epub 2024 Oct 20.
Drug resistance in cancer treatment, primarily attributed to the overexpression of the multidrug resistance (MDR) gene, significantly hampers the effectiveness of chemotherapy. This mechanism, driven by the increased production of P-glycoprotein (P-gp) efflux pumps, highlights the urgent need for innovative strategies to combat drug resistance in cancer patients. This study explores the application of antisense technology to suppress MDR gene expression, while addressing the challenges of instability and limited cellular uptake associated with antisense oligonucleotides. We synthesized Janus silver-mesoporous silica nanoparticles (Ag/MSN JNPs) using a sol-gel method, characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), revealing uniformly sized, dumbbell-shaped nanoparticles with an average size of 285 ± 5.12 nm. Doxorubicin (DOX) was loaded into the porous structure of the mesoporous silica, and JNPs were functionalized with chitosan (CS) to incorporate P-gp antisense and a MUC-1 aptamer, serving as a pH-responsive gatekeeper. Our findings indicate that the Ap-As-DOX-JNPs achieved a remarkable 89 ± 0.59 % cell death in drug-resistant MCF-7/ADR cells after 48 h, alongside an 80 % reduction in P-gp expression. The combination of DOX, antisense technology, and photothermal therapy utilizing these JNPs demonstrates a promising strategy to effectively overcome drug resistance. Notably, normal MCF-7 cells exhibited reduced viability from 39.11 ± 1.12 % to 30.05 ± 1.07 % when treated with DOX-JNPs under near-infrared (NIR) irradiation. These results underscore the potential of utilizing MUC-1 aptamer-conjugated Janus nanoparticles in conjunction with chitosan as a gatekeeper to enhance the efficacy of chemotherapy, photothermal therapy, and gene therapy in overcoming multidrug resistance in cancer treatment.
癌症治疗中的耐药性主要归因于多药耐药(MDR)基因的过度表达,这显著降低了化疗的疗效。这种机制是由 P 糖蛋白(P-gp)外排泵的过度产生驱动的,突出表明迫切需要创新策略来对抗癌症患者的耐药性。本研究探讨了反义技术在抑制 MDR 基因表达方面的应用,同时解决了与反义寡核苷酸相关的不稳定性和有限细胞摄取的挑战。我们使用溶胶-凝胶法合成了 Janus 银介孔硅纳米粒子(Ag/MSN JNPs),通过透射电子显微镜(TEM)和动态光散射(DLS)进行了表征,结果表明该纳米粒子为均一尺寸的哑铃形,平均尺寸为 285 ± 5.12nm。阿霉素(DOX)被载入介孔硅的多孔结构中,JNPs 用壳聚糖(CS)进行功能化,以整合 P-gp 反义寡核苷酸和 MUC-1 适体,作为 pH 响应的门控。我们的研究结果表明,在 48 小时后,耐药 MCF-7/ADR 细胞中 Ap-As-DOX-JNPs 实现了高达 89 ± 0.59%的细胞死亡,同时 P-gp 表达降低了 80%。DOX、反义技术和利用这些 JNPs 的光热治疗的结合展示了一种有效克服耐药性的有前途的策略。值得注意的是,当用近红外(NIR)照射下的 DOX-JNPs 处理时,正常 MCF-7 细胞的活力从 39.11 ± 1.12%降低至 30.05 ± 1.07%。这些结果强调了利用 MUC-1 适体偶联的 Janus 纳米粒子与壳聚糖结合作为门控来增强化疗、光热治疗和基因治疗在克服癌症治疗中的多药耐药性的潜力。