Mousavi-Kiasary Seyed Mohamad Sadegh, Senabreh Ahmood, Zandi Ashkan, Pena Rogelio, Cruz Frances, Adibi Ali, Hooshmand Nasrin
Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA.
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Pharmaceutics. 2025 May 22;17(6):682. doi: 10.3390/pharmaceutics17060682.
Cancer remains a formidable global health challenge due to its complex pathophysiology and resistance to conventional treatments. In recent years, the convergence of nanotechnology and oncology has paved the way for innovative therapeutic platforms that address the limitations of traditional modalities. This review examines how nanoparticle (NP)-based strategies enhance the efficacy of chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy by enabling targeted delivery, controlled drug release, and tumor-specific accumulation via the enhanced permeability and retention (EPR) effect. We discuss the design and functionalization of various organic, inorganic, and hybrid NPs, highlighting their roles in improving pharmacokinetics, overcoming multidrug resistance, and modulating the tumor microenvironment. Particular emphasis is placed on dual and multimodal therapies, such as chemo-phototherapy, chemo-immunotherapy, and gene-radiotherapy, that leverage nanoparticle carriers to amplify synergistic effects, minimize systemic toxicity, and improve clinical outcomes. We also explore cutting-edge advances in gene editing and personalized nanomedicine, as well as emerging strategies to address biological barriers and immunosuppressive mechanisms in the tumor niche. Despite the undeniable promise of nanoparticle-based cancer therapies, challenges related to toxicity, scalable manufacturing, regulatory oversight, and long-term biocompatibility must be overcome before they can fully enter clinical practice. By synthesizing recent findings and identifying key opportunities for innovation, this review provides insight into how nanoscale platforms are propelling the next generation of precision oncology.
由于癌症复杂的病理生理学特性以及对传统治疗方法的耐药性,它仍然是一项严峻的全球健康挑战。近年来,纳米技术与肿瘤学的融合为创新治疗平台铺平了道路,这些平台解决了传统治疗方式的局限性。本综述探讨了基于纳米颗粒(NP)的策略如何通过增强的通透性和滞留(EPR)效应实现靶向递送、控制药物释放和肿瘤特异性积累,从而提高化疗、放疗、光疗、免疫疗法和基因疗法的疗效。我们讨论了各种有机、无机和混合纳米颗粒的设计与功能化,强调了它们在改善药代动力学、克服多药耐药性以及调节肿瘤微环境方面的作用。特别强调了双模态和多模态疗法,如化学光疗法、化学免疫疗法和基因放射疗法,这些疗法利用纳米颗粒载体来放大协同效应、最小化全身毒性并改善临床结果。我们还探讨了基因编辑和个性化纳米医学的前沿进展,以及应对肿瘤微环境中的生物屏障和免疫抑制机制的新兴策略。尽管基于纳米颗粒的癌症治疗前景不可否认,但在它们能够完全进入临床实践之前,必须克服与毒性、可扩展制造、监管监督和长期生物相容性相关的挑战。通过综合近期研究结果并确定关键的创新机会,本综述深入探讨了纳米级平台如何推动下一代精准肿瘤学的发展。
Neural Regen Res. 2025-6-19
Cochrane Database Syst Rev. 2018-2-6
Health Soc Care Deliv Res. 2025-5-21
JBI Database System Rev Implement Rep. 2016-4
Mol Biol Rep. 2025-6-21
Discov Oncol. 2025-6-21
J Psychiatr Ment Health Nurs. 2024-8
iScience. 2024-12-14
J Transl Med. 2024-12-27
J Mater Chem B. 2024-12-18
MedComm (2020). 2024-10-20
Biochemistry. 2024-12-3