文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒增强的协同癌症疗法:通过多模态策略推进纳米医学

Synergistic Cancer Therapies Enhanced by Nanoparticles: Advancing Nanomedicine Through Multimodal Strategies.

作者信息

Mousavi-Kiasary Seyed Mohamad Sadegh, Senabreh Ahmood, Zandi Ashkan, Pena Rogelio, Cruz Frances, Adibi Ali, Hooshmand Nasrin

机构信息

Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Pharmaceutics. 2025 May 22;17(6):682. doi: 10.3390/pharmaceutics17060682.


DOI:10.3390/pharmaceutics17060682
PMID:40573996
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12196053/
Abstract

Cancer remains a formidable global health challenge due to its complex pathophysiology and resistance to conventional treatments. In recent years, the convergence of nanotechnology and oncology has paved the way for innovative therapeutic platforms that address the limitations of traditional modalities. This review examines how nanoparticle (NP)-based strategies enhance the efficacy of chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy by enabling targeted delivery, controlled drug release, and tumor-specific accumulation via the enhanced permeability and retention (EPR) effect. We discuss the design and functionalization of various organic, inorganic, and hybrid NPs, highlighting their roles in improving pharmacokinetics, overcoming multidrug resistance, and modulating the tumor microenvironment. Particular emphasis is placed on dual and multimodal therapies, such as chemo-phototherapy, chemo-immunotherapy, and gene-radiotherapy, that leverage nanoparticle carriers to amplify synergistic effects, minimize systemic toxicity, and improve clinical outcomes. We also explore cutting-edge advances in gene editing and personalized nanomedicine, as well as emerging strategies to address biological barriers and immunosuppressive mechanisms in the tumor niche. Despite the undeniable promise of nanoparticle-based cancer therapies, challenges related to toxicity, scalable manufacturing, regulatory oversight, and long-term biocompatibility must be overcome before they can fully enter clinical practice. By synthesizing recent findings and identifying key opportunities for innovation, this review provides insight into how nanoscale platforms are propelling the next generation of precision oncology.

摘要

由于癌症复杂的病理生理学特性以及对传统治疗方法的耐药性,它仍然是一项严峻的全球健康挑战。近年来,纳米技术与肿瘤学的融合为创新治疗平台铺平了道路,这些平台解决了传统治疗方式的局限性。本综述探讨了基于纳米颗粒(NP)的策略如何通过增强的通透性和滞留(EPR)效应实现靶向递送、控制药物释放和肿瘤特异性积累,从而提高化疗、放疗、光疗、免疫疗法和基因疗法的疗效。我们讨论了各种有机、无机和混合纳米颗粒的设计与功能化,强调了它们在改善药代动力学、克服多药耐药性以及调节肿瘤微环境方面的作用。特别强调了双模态和多模态疗法,如化学光疗法、化学免疫疗法和基因放射疗法,这些疗法利用纳米颗粒载体来放大协同效应、最小化全身毒性并改善临床结果。我们还探讨了基因编辑和个性化纳米医学的前沿进展,以及应对肿瘤微环境中的生物屏障和免疫抑制机制的新兴策略。尽管基于纳米颗粒的癌症治疗前景不可否认,但在它们能够完全进入临床实践之前,必须克服与毒性、可扩展制造、监管监督和长期生物相容性相关的挑战。通过综合近期研究结果并确定关键的创新机会,本综述深入探讨了纳米级平台如何推动下一代精准肿瘤学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/fb8eb66550e4/pharmaceutics-17-00682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/07034e2dd480/pharmaceutics-17-00682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/bbce5bb8e067/pharmaceutics-17-00682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/c5835463d694/pharmaceutics-17-00682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/199d7dba536d/pharmaceutics-17-00682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/4e04ee684ec1/pharmaceutics-17-00682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/fd4a0890f7c6/pharmaceutics-17-00682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/fb8eb66550e4/pharmaceutics-17-00682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/07034e2dd480/pharmaceutics-17-00682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/bbce5bb8e067/pharmaceutics-17-00682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/c5835463d694/pharmaceutics-17-00682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/199d7dba536d/pharmaceutics-17-00682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/4e04ee684ec1/pharmaceutics-17-00682-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/fd4a0890f7c6/pharmaceutics-17-00682-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a7/12196053/fb8eb66550e4/pharmaceutics-17-00682-g001.jpg

相似文献

[1]
Synergistic Cancer Therapies Enhanced by Nanoparticles: Advancing Nanomedicine Through Multimodal Strategies.

Pharmaceutics. 2025-5-22

[2]
Emerging nanoparticle-based strategies to provide therapeutic benefits for stroke.

Neural Regen Res. 2025-6-19

[3]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[4]
How to Implement Digital Clinical Consultations in UK Maternity Care: the ARM@DA Realist Review.

Health Soc Care Deliv Res. 2025-5-21

[5]
[Narrow-band UVB therapy in psoriasis vulgaris: good practice guideline and recommendations of the French Society of Photodermatology].

Ann Dermatol Venereol. 2010-1

[6]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[7]
Mechanistic insight into nanomedicine for polycystic ovary syndrome.

Mol Biol Rep. 2025-6-21

[8]
Nanotechnology in oncology: advances in biosynthesis, drug delivery, and theranostics.

Discov Oncol. 2025-6-21

[9]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

[10]
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.

J Psychiatr Ment Health Nurs. 2024-8

引用本文的文献

[1]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

本文引用的文献

[1]
Efficient Intracellular Delivery of CRISPR-Cas9 Ribonucleoproteins Using Dendrimer Nanoparticles for Robust Genomic Editing.

Nano Today. 2025-4

[2]
A PD-L1 siRNA-Loaded Boron Nanoparticle for Targeted Cancer Radiotherapy and Immunotherapy.

Adv Mater. 2025-4

[3]
Advances in nanoparticle-based radiotherapy for cancer treatment.

iScience. 2024-12-14

[4]
Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.

Mol Cancer. 2025-1-18

[5]
Nanobiomaterials & nanomedicine.

J Transl Med. 2024-12-27

[6]
Nanoparticles based image-guided thermal therapy and temperature feedback.

J Mater Chem B. 2024-12-18

[7]
Synergistic pH-responsive MUC-1 aptamer-conjugated Ag/MSN Janus nanoparticles for targeted chemotherapy, photothermal therapy, and gene therapy in breast cancer.

Biomater Adv. 2025-1

[8]
Nanomedicine for cancer patient-centered care.

MedComm (2020). 2024-10-20

[9]
Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature.

J Control Release. 2024-12

[10]
Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases.

Biochemistry. 2024-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索