Vara, Berlin, Germany.
Vara, Berlin, Germany.
Lancet Digit Health. 2024 Nov;6(11):e803-e814. doi: 10.1016/S2589-7500(24)00173-0.
Integrating artificial intelligence (AI) into mammography screening can support radiologists and improve programme metrics, yet the potential of different strategies for integrating the technology remains understudied. We compared programme-level performance metrics of seven AI integration strategies.
We performed a retrospective comparative evaluation of seven strategies for integrating AI into mammography screening using datasets generated from screening programmes in Germany (n=1 657 068), the UK (n=223 603) and Sweden (n=22 779). The commercially available AI model used was Vara version 2.10, trained from scratch on German data. We simulated the performance of each strategy in terms of cancer detection rate (CDR), recall rate, and workload reduction, and compared the metrics with those of the screening programmes. We also assessed the distribution of the stages and grades of the cancers detected by each strategy and the AI model's ability to correctly localise those cancers.
Compared with the German screening programme (CDR 6·32 per 1000 examinations, recall rate 4·11 per 100 examinations), replacement of both readers (standalone AI strategy) achieved a non-inferior CDR of 6·37 (95% CI 6·10-6·64) at a recall rate of 3·80 (95% CI 3·67-3·93), whereas single reader replacement achieved a CDR of 6·49 (6·31-6·67), a recall rate of 4·01 (3·92-4·10), and a 49% workload reduction. Programme-level decision referral achieved a CDR of 6·85 (6·61-7·11), a recall rate of 3·55 (3·43-3·68), and an 84% workload reduction. Compared with the UK programme CDR of 8·19, the reader-level, programme-level, and deferral to single reader strategies achieved CDRs of 8·24 (7·82-8·71), 8·59 (8·12-9·06), and 8·28 (7·86-8·71), without increasing recall and while reducing workload by 37%, 81%, and 95%, respectively. On the Swedish dataset, programme-level decision referral increased the CDR by 17·7% without increasing recall and while reducing reading workload by 92%.
The decision referral strategies offered the largest improvements in cancer detection rates and reduction in recall rates, and all strategies except normal triaging showed potential to improve screening metrics.
Vara.
将人工智能(AI)融入乳房 X 光筛查中可以支持放射科医生并改善项目指标,但不同的技术整合策略的潜力仍有待研究。我们比较了七种 AI 整合策略的项目水平绩效指标。
我们使用来自德国(n=1 657 068)、英国(n=223 603)和瑞典(n=22 779)筛查项目生成的数据集,对七种策略进行了回顾性比较评估,用于将 AI 整合到乳房 X 光筛查中。使用的商业上可用的 AI 模型是 Vara 版本 2.10,从零开始在德国数据上进行训练。我们根据癌症检出率(CDR)、召回率和工作量减少来模拟每种策略的性能,并将这些指标与筛查项目进行比较。我们还评估了每种策略和 AI 模型检测到的癌症的阶段和分级分布,以及 AI 模型正确定位这些癌症的能力。
与德国筛查项目(每 1000 次检查的癌症检出率为 6.32,每 100 次检查的召回率为 4.11)相比,两名阅片员(独立 AI 策略)的替换实现了非劣效性的癌症检出率为 6.37(95%CI 6.10-6.64),召回率为 3.80(95%CI 3.67-3.93),而单名阅片员的替换实现了癌症检出率为 6.49(6.31-6.67),召回率为 4.01(3.92-4.10),并减少了 49%的工作量。项目水平决策转诊实现了癌症检出率为 6.85(6.61-7.11),召回率为 3.55(3.43-3.68),并减少了 84%的工作量。与英国项目的癌症检出率 8.19 相比,阅片员水平、项目水平和转诊至单名阅片员的策略实现了癌症检出率为 8.24(7.82-8.71)、8.59(8.12-9.06)和 8.28(7.86-8.71),而不增加召回率,并分别减少 37%、81%和 95%的工作量。在瑞典数据集上,项目水平决策转诊提高了 17.7%的癌症检出率,而不增加召回率,并减少了 92%的阅读工作量。
决策转诊策略在提高癌症检出率和降低召回率方面提供了最大的改进,除了正常分诊外,所有策略都显示出改善筛查指标的潜力。
Vara。