随机森林分类器在飞行时间二次离子质谱成像数据中的应用。

The Application of a Random Forest Classifier to ToF-SIMS Imaging Data.

作者信息

Shamraeva Mariya A, Visvikis Theodoros, Zoidis Stefanos, Anthony Ian G M, Van Nuffel Sebastiaan

机构信息

Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.

Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, Maastricht 6229EN, The Netherlands.

出版信息

J Am Soc Mass Spectrom. 2024 Dec 4;35(12):2801-2814. doi: 10.1021/jasms.4c00324. Epub 2024 Oct 25.

Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is a potent analytical tool that provides spatially resolved chemical information on surfaces at the microscale. However, the hyperspectral nature of ToF-SIMS datasets can be challenging to analyze and interpret. Both supervised and unsupervised machine learning (ML) approaches are increasingly useful to help analyze ToF-SIMS data. Random Forest (RF) has emerged as a robust and powerful algorithm for processing mass spectrometry data. This machine learning approach offers several advantages, including accommodating nonlinear relationships, robustness to outliers in the data, managing the high-dimensional feature space, and mitigating the risk of overfitting. The application of RF to ToF-SIMS imaging facilitates the classification of complex chemical compositions and the identification of features contributing to these classifications. This tutorial aims to assist nonexperts in either machine learning or ToF-SIMS to apply Random Forest to complex ToF-SIMS datasets.

摘要

飞行时间二次离子质谱(ToF-SIMS)成像技术是一种强大的分析工具,可在微观尺度上提供表面化学信息的空间分辨。然而,ToF-SIMS数据集的高光谱特性可能会给分析和解释带来挑战。有监督和无监督机器学习(ML)方法在帮助分析ToF-SIMS数据方面越来越有用。随机森林(RF)已成为处理质谱数据的强大算法。这种机器学习方法具有几个优点,包括能够处理非线性关系、对数据中的异常值具有鲁棒性、管理高维特征空间以及降低过拟合风险。将RF应用于ToF-SIMS成像有助于对复杂化学成分进行分类,并识别对这些分类有贡献的特征。本教程旨在帮助机器学习或ToF-SIMS领域的非专业人员将随机森林应用于复杂的ToF-SIMS数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b1/11622239/8b722c7be908/js4c00324_0001.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索