Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia.
La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.
Biointerphases. 2020 Nov 16;15(6):061004. doi: 10.1116/6.0000614.
The advantages of applying multivariate analysis to mass spectrometry imaging (MSI) data have been thoroughly demonstrated in recent decades. The identification and visualization of complex relationships between pixels in a hyperspectral data set can provide unique insights into the underlying surface chemistry. It is now recognized that most MSI data contain nonlinear relationships, which has led to increased application of machine learning approaches. Previously, we exemplified the use of the self-organizing map (SOM), a type of artificial neural network, for analyzing time-of-flight secondary ion mass spectrometry (TOF-SIMS) hyperspectral images. Recently, we developed a novel methodology, SOM-relational perspective mapping (RPM), which incorporates the algorithm RPM to improve visualization of the SOM for 2D TOF-SIMS images. Here, we use SOM-RPM to characterize and interpret 3D TOF-SIMS depth profile data, voxel-by-voxel. An organic Irganox multilayer standard sample was depth profiled using TOF-SIMS, and SOM-RPM was used to create 3D similarity maps of the depth-profiled sample, in which the mass spectral similarity of individual voxels is modeled with color similarity. We used this similarity map to segment the data into spatial features, demonstrating that the unsupervised method meaningfully differentiated between Irganox-3114 and Irganox-1010 nanometer-thin multilayer films. The method also identified unique clusters at the surface associated with environmental exposure and sample degradation. Key fragment ions characteristic of each cluster were identified, tying clusters to their underlying chemistries. SOM-RPM has the demonstrable ability to reduce vast data sets to simple 3D visualizations that can be used for clustering data and visualizing the complex relationships within.
应用多元分析于质谱成像(MSI)数据的优势在最近几十年得到了充分的证明。在高光谱数据集的像素之间识别和可视化复杂关系可以提供对底层表面化学的独特见解。现在人们认识到,大多数 MSI 数据都包含非线性关系,这导致了机器学习方法的应用增加。以前,我们举例说明了自组织映射(SOM)的使用,这是一种人工神经网络,用于分析飞行时间二次离子质谱(TOF-SIMS)高光谱图像。最近,我们开发了一种新的方法,即 SOM-关系视角映射(RPM),它将 RPM 算法纳入到 2D TOF-SIMS 图像的 SOM 可视化中。在这里,我们使用 SOM-RPM 逐点地对 3D TOF-SIMS 深度剖面数据进行特征描述和解释。使用 TOF-SIMS 对有机 Irganox 多层标准样品进行深度剖析,然后使用 SOM-RPM 创建深度剖析样品的 3D 相似性映射,其中用颜色相似性来模拟单个体素的质谱相似性。我们使用该相似性映射将数据分割成空间特征,证明了这种无监督方法可以有意义地将 Irganox-3114 和 Irganox-1010 纳米级超薄多层膜区分开来。该方法还在表面上识别出与环境暴露和样品降解相关的独特簇。每个簇都有其特征的关键片段离子,将簇与它们的底层化学联系起来。SOM-RPM 具有将庞大数据集简化为简单的 3D 可视化的能力,这些可视化可用于聚类数据和可视化内部的复杂关系。