Suppr超能文献

利用滞后相关高斯过程模型分析和预测首都和泰国南部的空气污染浓度。

Analyzing and forecasting air pollution concentration in the capital and Southern Thailand using a lag-dependent Gaussian process model.

机构信息

Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand.

Air Pollution and Health Effect Research Center, Prince of Songkla University, Songkhla, 90110, Thailand.

出版信息

Environ Monit Assess. 2024 Oct 26;196(11):1106. doi: 10.1007/s10661-024-13275-w.

Abstract

The air pollution problem has now amassed worldwide attention due to its multifaceted harm to human health. Exploring the concentration of air pollution and improving forecast have important consideration worldwide. In this research, we analyze the air pollution concentration of Southern Thailand and compare it with the central region. Also, we proposed a methodology based on the lag-dependent Gaussian process (LDGP), a Bayesian non-parametric machine learning model, with a stable optimization approach, which is a cluster-based multi-starter technique based on the Nelder-Mead optimizer. This model also provides the confidence band for forecasted values. We also used autoregressive deep neural network (AR-DNN), autoregressive random forest (AR-RF), gradient boosting (GB), and K-nearest neighbors (KNN) models. A comparison of the proposed methodology was performed on the daily air pollution data collected from the southern provinces and also from the capital of Thailand from 1 January 2018 to 31 December 2022. We used well-established performance evaluation measures to compare the performance of the models. To evaluate the bias due to overfit, we performed a tenfold cross-validation for all the pollutants in each region and compared the models to choose the best one. Moreover, we explored the concentration of air pollution in these regions. Results of descriptive analysis revealed that Bangkok had a much higher concentration of air pollution as compared to the southern region. However, the southern region had higher exposure to PM air pollutants as per WHO recommendations and also had higher exposure to O and CO levels. The proposed LDGP model outperformed the other machine learning models for forecasting all air pollutants. Hence, it is recommended to be used by experts for further research and studies with different kernel functions. This research is also expected to contribute to local government planning and prevention and worldwide use of the same methodology for the sustainability of public health.

摘要

由于对人类健康的多方面危害,空气污染问题现已引起全球关注。探索空气污染浓度并提高预测能力是全球范围内的重要考虑因素。在这项研究中,我们分析了泰国南部的空气污染浓度,并将其与中心区域进行了比较。此外,我们还提出了一种基于滞后依赖高斯过程(LDGP)的方法,这是一种基于 Nelder-Mead 优化器的基于聚类的多启动技术的贝叶斯非参数机器学习模型,具有稳定的优化方法。该模型还为预测值提供置信带。我们还使用了自回归深度神经网络(AR-DNN)、自回归随机森林(AR-RF)、梯度提升(GB)和 K-最近邻(KNN)模型。在从 2018 年 1 月 1 日至 2022 年 12 月 31 日从泰国南部省份和首都收集的每日空气污染数据上对所提出的方法进行了比较。我们使用了经过充分验证的性能评估措施来比较模型的性能。为了评估由于过度拟合而导致的偏差,我们对每个区域中的所有污染物进行了十折交叉验证,并比较了模型以选择最佳模型。此外,我们还探索了这些地区的空气污染浓度。描述性分析的结果表明,与南部地区相比,曼谷的空气污染浓度要高得多。然而,根据世界卫生组织的建议,南部地区的 PM 空气污染物暴露水平更高,O 和 CO 水平也更高。所提出的 LDGP 模型在预测所有空气污染物方面均优于其他机器学习模型。因此,建议专家使用该模型进行进一步的研究和学习,并使用不同的核函数。这项研究也有望为当地政府的规划和预防工作做出贡献,并在全球范围内使用相同的方法来促进公共卫生的可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验