GeneDx (Sema4), 333 Ludlow Street, Stamford, CT, 06902, USA.
Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
Sci Rep. 2024 Oct 25;14(1):25387. doi: 10.1038/s41598-024-77447-x.
The use of electronic health records (EHRs) holds the potential to enhance clinical trial activities. However, the identification of eligible patients within EHRs presents considerable challenges. We aimed to develop a CriteriaMapper system for phenotyping eligibility criteria, enabling the identification of patients from EHRs with clinical characteristics that match those criteria. We utilized clinical trial eligibility criteria and patient EHRs from the Mount Sinai Database. The CriteriaMapper system was developed to normalize the criteria using national standard terminologies and in-house databases, facilitating computability and queryability to bridge clinical trial criteria and EHRs. The system employed rule-based pattern recognition and manual annotation. Our system normalized 367 out of 640 unique eligibility criteria attributes, covering various medical conditions including non-small cell lung cancer, small cell lung cancer, prostate cancer, breast cancer, multiple myeloma, ulcerative colitis, Crohn's disease, non-alcoholic steatohepatitis, and sickle cell anemia. About 174 criteria were encoded with standard terminologies and 193 were normalized using the in-house reference tables. The agreement between automated and manual normalization was high (Cohen's Kappa = 0.82), and patient matching demonstrated a 0.94 F1 score. Our system has proven effective on EHRs from multiple institutions, showing broad applicability and promising improved clinical trial processes, leading to better patient selection, and enhanced clinical research outcomes.
电子健康记录(EHRs)的使用具有增强临床试验活动的潜力。然而,在 EHRs 中识别合格患者存在相当大的挑战。我们旨在开发一个 CriteriaMapper 系统来对表型入选标准进行分类,以便从 EHR 中识别出具有与这些标准相匹配的临床特征的患者。我们使用了来自西奈山数据库的临床试验入选标准和患者 EHRs。CriteriaMapper 系统旨在使用国家标准术语和内部数据库对标准进行规范化,从而实现计算能力和可查询性,以连接临床试验标准和 EHRs。该系统采用基于规则的模式识别和手动注释。我们的系统规范化了 640 个独特入选标准属性中的 367 个,涵盖了各种医疗条件,包括非小细胞肺癌、小细胞肺癌、前列腺癌、乳腺癌、多发性骨髓瘤、溃疡性结肠炎、克罗恩病、非酒精性脂肪性肝炎和镰状细胞性贫血。约有 174 个标准采用标准术语进行编码,193 个标准采用内部参考表进行规范化。自动规范化和手动规范化之间的一致性很高(Cohen's Kappa=0.82),患者匹配的 F1 评分达到 0.94。我们的系统已在多个机构的 EHRs 上得到验证,证明具有广泛的适用性和有前途的改进临床试验流程,从而更好地选择患者,并提高临床研究结果。