Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
Department of Physical Diagnostics, Heilongjiang Provincial Hospital, Harbin, China.
BMC Cancer. 2024 Oct 25;24(1):1316. doi: 10.1186/s12885-024-13031-w.
Sentinel lymph node (SLN) biopsy (SLNB) is considered the gold standard for detecting SLN metastases in patients with invasive ductal breast cancer (IDC). However, SLNB is invasive and associated with several complications. Thus, this study aimed to evaluate the diagnostic performance of a non-invasive radiomics analysis utilizing 2-deoxy-2-[F]fluoro-d-glucose positron emission tomography/computed tomography (F-FDG-PET/CT) for assessing SLN metastasis in IDC patients.
This retrospective study included 132 patients with biopsy-confirmed IDC, who underwent F-FDG PET/CT scans prior to mastectomy or breast-conserving surgery with SLNB. Tumor resection or SLNB was conducted within one-week post-scan. Clinical data and metabolic parameters were analyzed to identify independent SLN metastasis predictors. Radiomic features were extracted from each PET volume of interest (VOI) and CT-VOI. Feature selection involved univariate and multivariate logistic regression analysis, and the least absolute shrinkage and selection operator (LASSO) method. Three models were developed to predict SLN status using the random forest (RF), decision tree (DT), and k-Nearest Neighbors (KNN) classifiers. Model performance was assessed using the area under the receiver operating characteristic curve (AUC).
The study included 91 cases (32 SLN-positive and 59 SLN-negative patients) in the training cohort and 41 cases (29 SLN-positive and 12 SLN-negative patients) in the validation cohort. Multivariate logistic regression analysis identified Ki 67 and TLG as independent predictors of SLN status. Five PET-derived features, three CT-derived features, and two clinical variables were selected for model development. The AUC values of the RF, KNN, and DT models for the training cohort were 0.887, 0.849, and 0.824, respectively, and for the validation cohort were 0.856, 0.830, and 0.819, respectively. The RF model demonstrated the highest accuracy for the preoperative prediction of SLN metastasis in IDC patients.
The PET-CT radiomics approach may offer robust and non-invasive predictors for SLN status in IDC patients, potentially aiding in the planning of personalized treatment strategies for IDC patients.
前哨淋巴结(SLN)活检(SLNB)被认为是检测浸润性导管乳腺癌(IDC)患者 SLN 转移的金标准。然而,SLNB 是一种有创的检查,并且会引起一些并发症。因此,本研究旨在评估利用 2-脱氧-2-[F]氟代葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG-PET/CT)进行非侵入性放射组学分析,以评估 IDC 患者 SLN 转移的诊断性能。
本回顾性研究纳入了 132 例经活检证实的 IDC 患者,这些患者在乳房切除术或保乳手术联合 SLNB 前接受了 F-FDG PET/CT 扫描。扫描后一周内进行肿瘤切除或 SLNB。分析临床数据和代谢参数,以确定 SLN 转移的独立预测因素。从每个 PET 感兴趣区(VOI)和 CT-VOI 中提取放射组学特征。特征选择包括单变量和多变量逻辑回归分析,以及最小绝对收缩和选择算子(LASSO)方法。使用随机森林(RF)、决策树(DT)和 k-最近邻(KNN)分类器,分别建立三个模型来预测 SLN 状态。使用受试者工作特征曲线下的面积(AUC)评估模型性能。
该研究包括训练队列中的 91 例(32 例 SLN 阳性和 59 例 SLN 阴性患者)和验证队列中的 41 例(29 例 SLN 阳性和 12 例 SLN 阴性患者)。多变量逻辑回归分析确定 Ki-67 和 TLG 是 SLN 状态的独立预测因素。为模型开发选择了 5 个 PET 衍生特征、3 个 CT 衍生特征和 2 个临床变量。训练队列中 RF、KNN 和 DT 模型的 AUC 值分别为 0.887、0.849 和 0.824,验证队列的 AUC 值分别为 0.856、0.830 和 0.819。RF 模型在 IDC 患者术前预测 SLN 转移方面具有最高的准确性。
PET-CT 放射组学方法可为 IDC 患者的 SLN 状态提供强大的非侵入性预测指标,可能有助于为 IDC 患者制定个性化的治疗策略。