文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有近红外触发一氧化氮释放功能的多功能纳米平台用于增强肿瘤铁死亡。

Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis.

机构信息

Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

J Nanobiotechnology. 2024 Oct 26;22(1):656. doi: 10.1186/s12951-024-02942-2.


DOI:10.1186/s12951-024-02942-2
PMID:39456042
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11515185/
Abstract

Ferroptosis has emerged as a promising strategy for cancer treatment. Nevertheless, the efficiency of ferroptosis-mediated therapy remains a challenge due to high glutathione (GSH) levels and insufficient endogenous hydrogen peroxide in the tumor microenvironment. Herein, we presented a nitric-oxide (NO) boost-GSH depletion strategy for enhanced ferroptosis therapy through a multifunctional nanoplatform with near-infrared (NIR) triggered NO release. The nanoplatform, IS@ATF, was designed that self-assembled by loading the NO donor L-arginine (L-Arg), ferroptosis inducer sorafenib (SRF), and indocyanine green (ICG) onto tannic acid (TA)-Fe‒metal-phenolic networks (MPNs) modified with hydroxyethyl starch. Inside the tumor, SRF could inhibit GSH biosynthesis, impair the activation of glutathione peroxidase 4, and disrupt the ferroptosis defensive system. In conjunction with TA-Fe‒MPNs, which has cascaded Fenton catalytic activity, it could navigate the lethal ferroptosis to cancer cells. Upon NIR laser irradiation, the ICG-generated ROS oxidated L-Arg to a substantial quantity of NO, which further depleted the intracellular GSH and caused LPO accumulation, enhancing cell ferroptosis. Moreover, ICG also serves as a photothermal agent that can produce hyperthermia when exposed to irradiation, further potentiating ferroptosis therapy. In addition, the nanoplatform showed significantly improved tumor therapeutic efficacy and anti-metastasis efficiency. This work thus demonstrated that utilizing NO boost-GSH depletion to enhance ferroptosis induction is a feasible and promising strategy for cancer treatment.

摘要

铁死亡已成为癌症治疗的一种有前途的策略。然而,由于肿瘤微环境中谷胱甘肽 (GSH) 水平较高和内源性过氧化氢不足,铁死亡介导的治疗效率仍然是一个挑战。在此,我们提出了一种通过具有近红外 (NIR) 触发一氧化氮 (NO) 释放功能的多功能纳米平台来增强铁死亡治疗的 NO 促进-GSH 耗竭策略。纳米平台 IS@ATF 是通过将 NO 供体 L-精氨酸 (L-Arg)、铁死亡诱导剂索拉非尼 (SRF) 和吲哚菁绿 (ICG) 装载到用羟乙基淀粉修饰的单宁酸 (TA)-Fe-金属-多酚网络 (MPNs) 上来设计的。在肿瘤内部,SRF 可以抑制 GSH 的生物合成,破坏谷胱甘肽过氧化物酶 4 的激活,并破坏铁死亡防御系统。与具有级联 Fenton 催化活性的 TA-Fe-MPNs 一起,它可以引导致命的铁死亡进入癌细胞。在 NIR 激光照射下,ICG 产生的 ROS 将 L-Arg 氧化为大量的 NO,进一步耗尽细胞内 GSH 并导致 LPO 积累,增强细胞铁死亡。此外,ICG 还可用作光热剂,当暴露于照射时可以产生高热,进一步增强铁死亡治疗效果。此外,该纳米平台显示出显著提高的肿瘤治疗效果和抗转移效率。因此,本工作表明,利用 NO 促进-GSH 耗竭来增强铁死亡诱导是一种可行且有前途的癌症治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/8486f1fe097a/12951_2024_2942_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/3d71369a6c07/12951_2024_2942_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/447c43cea9a6/12951_2024_2942_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/40dae55cdd2f/12951_2024_2942_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/256622b79931/12951_2024_2942_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/da4d84bf9350/12951_2024_2942_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/3dbc8e61a032/12951_2024_2942_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/02acae525873/12951_2024_2942_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/8486f1fe097a/12951_2024_2942_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/3d71369a6c07/12951_2024_2942_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/447c43cea9a6/12951_2024_2942_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/40dae55cdd2f/12951_2024_2942_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/256622b79931/12951_2024_2942_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/da4d84bf9350/12951_2024_2942_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/3dbc8e61a032/12951_2024_2942_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/02acae525873/12951_2024_2942_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/11515185/8486f1fe097a/12951_2024_2942_Fig7_HTML.jpg

相似文献

[1]
Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis.

J Nanobiotechnology. 2024-10-26

[2]
TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy.

Int J Nanomedicine. 2024

[3]
Dendrimer/metal-phenolic nanocomplexes encapsulating CuO for targeted magnetic resonance imaging and enhanced ferroptosis/cuproptosis/chemodynamic therapy by regulating the tumor microenvironment.

Acta Biomater. 2024-7-15

[4]
Metal-polyphenol self-assembled nanodots for NIR-II fluorescence imaging-guided chemodynamic/photodynamic therapy-amplified ferroptosis.

Acta Biomater. 2024-9-1

[5]
Near infrared light triggered ternary synergistic cancer therapy via L-arginine-loaded nanovesicles with modification of PEGylated indocyanine green.

Acta Biomater. 2022-3-1

[6]
ICG/l-Arginine Encapsulated PLGA Nanoparticle-Thermosensitive Hydrogel Hybrid Delivery System for Cascade Cancer Photodynamic-NO Therapy with Promoted Collagen Depletion in Tumor Tissues.

Mol Pharm. 2021-3-1

[7]
Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy.

J Nanobiotechnology. 2021-7-8

[8]
pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy.

Biomacromolecules. 2024-1-8

[9]
l-Arginine-Modified CoWO /FeWO S-Scheme Heterojunction Enhances Ferroptosis against Solid Tumor.

Adv Healthc Mater. 2023-7

[10]
Near-Infrared Light-Triggered Nitric-Oxide-Enhanced Photodynamic Therapy and Low-Temperature Photothermal Therapy for Biofilm Elimination.

ACS Nano. 2020-3-24

引用本文的文献

[1]
Ferroptosis: A critical link to treatment resistance in esophageal carcinoma.

iScience. 2025-6-14

[2]
Light-Activated Hypoxia-Responsive Nanoparticles for Photodynamic Chemotherapy.

ACS Omega. 2025-5-30

本文引用的文献

[1]
Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy.

Adv Healthc Mater. 2024-6

[2]
"Characterization and stability of α-tocopherol loaded solid lipid nanoparticles formulated with different fully hydrogenated vegetable oils".

Food Chem. 2024-5-1

[3]
Near-infrared light activatable niosomes loaded with indocyanine green and plasmonic gold nanorods for theranostic applications.

Biomater Sci. 2023-12-5

[4]
An AND Logic Gate for Magnetic-Resonance-Imaging-Guided Ferroptosis Therapy of Tumors.

Adv Mater. 2023-11

[5]
GSH-depleting metal-polyphenol-network nanoparticles with dual enzyme activities induce enhanced ferroptosis.

Biomater Sci. 2023-10-10

[6]
Nitric oxide-driven nanotherapeutics for cancer treatment.

J Control Release. 2023-10

[7]
Exceedingly Small Magnetic Iron Oxide Nanoparticles for T -Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors.

Small. 2023-12

[8]
Ferroptosis Nanomedicine: Clinical Challenges and Opportunities for Modulating Tumor Metabolic and Immunological Landscape.

ACS Nano. 2023-8-22

[9]
Enhanced Transcutaneous Chemodynamic Therapy for Melanoma Treatment through Cascaded Fenton-like Reactions and Nitric Oxide Delivery.

ACS Nano. 2023-8-22

[10]
Targeting endothelial permeability in the EPR effect.

J Control Release. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索