Pérez-Araluce Maria, Cianciosi Alessandro, Iglesias-García Olalla, Jüngst Tomasz, Sanmartín Carmen, Navarro-Blasco Íñigo, Prósper Felipe, Plano Daniel, Mazo Manuel M
Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain.
Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070 Würzburg, Germany.
Antioxidants (Basel). 2024 Oct 15;13(10):1238. doi: 10.3390/antiox13101238.
The study addresses the challenge of temperature sensitivity in pristine gelatin hydrogels, widely used in biomedical applications due to their biocompatibility, low cost, and cell adhesion properties. Traditional gelatin hydrogels dissolve at physiological temperatures, limiting their utility. Here, we introduce a novel method for creating stable hydrogels at 37 °C using pristine gelatin through photopolymerization without requiring chemical modifications. This approach enhances consistency and simplifies production and functionalization of the gelatin with bioactive molecules. The stabilization mechanism involves the partial retention of the triple-helix structure of gelatin below 25 °C, which provides specific crosslinking sites. Upon activation by visible light, ruthenium (Ru) acts as a photosensitizer that generates sulphate radicals from sodium persulphate (SPS), inducing covalent bonding between tyrosine residues and "locking" the triple-helix conformation. The primary focus of this work is the characterization of the mechanical properties, swelling ratio, and biocompatibility of the photopolymerized gelatin hydrogels. Notably, these hydrogels supported better cell viability and elongation in normal human dermal fibroblasts (NHDFs) compared to GelMA, and similar performance was observed for human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). As a proof of concept for functionalization, gelatin was modified with selenous acid (GelSe), which demonstrated antioxidant and antimicrobial capacities, particularly against and . These results suggest that pristine gelatin hydrogels, enhanced through this new photopolymerization method and functionalized with bioactive molecules, hold potential for advancing regenerative medicine and tissue engineering by providing robust, biocompatible scaffolds for cell culture and therapeutic applications.
该研究解决了原始明胶水凝胶中温度敏感性的挑战,原始明胶水凝胶因其生物相容性、低成本和细胞粘附特性而广泛应用于生物医学领域。传统的明胶水凝胶在生理温度下会溶解,限制了它们的实用性。在此,我们介绍了一种新方法,通过光聚合作用,在不进行化学修饰的情况下,使用原始明胶在37°C下制备稳定的水凝胶。这种方法提高了一致性,并简化了明胶与生物活性分子的生产和功能化。稳定机制涉及明胶三螺旋结构在25°C以下的部分保留,这提供了特定的交联位点。在可见光激活后,钌(Ru)作为光敏剂,从过硫酸钠(SPS)中产生硫酸根自由基,诱导酪氨酸残基之间形成共价键,并“锁定”三螺旋构象。这项工作的主要重点是对光聚合明胶水凝胶的力学性能、溶胀率和生物相容性进行表征。值得注意的是,与甲基丙烯酸明胶(GelMA)相比,这些水凝胶在正常人皮肤成纤维细胞(NHDFs)中支持更好的细胞活力和伸长,并且在人多能干细胞衍生的心肌细胞(hiPSC-CMs)中也观察到了类似的性能。作为功能化的概念验证,用亚硒酸(GelSe)对明胶进行了修饰,其表现出抗氧化和抗菌能力,特别是对……和……。这些结果表明,通过这种新的光聚合方法增强并经生物活性分子功能化的原始明胶水凝胶,通过为细胞培养和治疗应用提供坚固、生物相容的支架,在推进再生医学和组织工程方面具有潜力。