Guirado-Peláez Patricia, Fernández-Jiménez Rocío, Sánchez-Torralvo Francisco José, Mucarzel Suárez-Arana Fernanda, Palmas-Candia Fiorella Ximena, Vegas-Aguilar Isabel, Amaya-Campos María Del Mar, Martínez Tamés Gema, Soria-Utrilla Virginia, Tinahones-Madueño Francisco, García-Almeida José Manuel, Burgos-Peláez Rosa, Olveira Gabriel
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain.
Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain.
Cancers (Basel). 2024 Oct 15;16(20):3493. doi: 10.3390/cancers16203493.
(1) Background: Accurate body composition assessment in CCR patients is crucial due to the high prevalence of malnutrition, sarcopenia, and cachexia affecting survival. This study evaluates the correlation between body composition assessed by CT imaging as a reference technique, BIVA, nutritional ultrasound, and handgrip strength in CCR patients. (2) Methods: This retrospective study included CCR patients assessed by the Endocrinology and Nutrition Services of Virgen de la Victoria in Malaga and Vall d'Hebron in Barcelona from October 2018 to July 2023. Assessments included anthropometry, BIVA, NU, HGS, and AI-assisted CT analysis at the L3 level for body composition. Pearson's analysis determined the correlation of CT-derived variables with BIVA, NU, and HGS. (3) Results: A total of 267 CCR patients (mean age 68.2 ± 10.9 years, 61.8% men) were studied. Significant gender differences were found in body composition and strength. CT-SMI showed strong correlations with body cell mass (r = 0.65), rectus femoris cross-sectional area (r = 0.56), and handgrip strength (r = 0.55), with a Cronbach's alpha of 0.789. CT-based adipose tissue measurements showed significant correlations with fat mass (r = 0.56), BMI (r = 0.78), A-SAT (r = 0.49), and L-SAT (r = 0.66). Regression analysis indicated a high predictive power for CT-SMI, explaining approximately 80% of its variance (R = 0.796). (4) Conclusions: Comprehensive screening of colorectal cancer patients through BIVA, NU, HGS, and CT optimizes the results of the evaluation. These methods complement each other in assessing muscle mass, fat distribution, and nutritional status in CCR. When CT is unavailable or bedside assessment is needed, HGS, BIVA, and NU provide an accurate assessment of body composition.
(1) 背景:由于营养不良、肌肉减少症和恶病质的高患病率影响生存率,对慢性结直肠癌(CCR)患者进行准确的身体成分评估至关重要。本研究评估了作为参考技术的CT成像、生物电阻抗矢量分析(BIVA)、营养超声和握力在CCR患者身体成分之间的相关性。(2) 方法:这项回顾性研究纳入了2018年10月至2023年7月在马拉加的维多利亚圣母医院和巴塞罗那的瓦尔德希伯伦医院的内分泌和营养科评估的CCR患者。评估包括人体测量、BIVA、营养超声(NU)、握力(HGS)以及在L3水平进行人工智能辅助CT分析以评估身体成分。Pearson分析确定了CT衍生变量与BIVA、NU和HGS之间的相关性。(3) 结果:共研究了267例CCR患者(平均年龄68.2±10.9岁,61.8%为男性)。在身体成分和力量方面发现了显著的性别差异。CT骨骼肌指数(CT-SMI)与身体细胞质量(r = 0.65)、股直肌横截面积(r = 0.56)和握力(r = 0.55)显示出强相关性,Cronbach's alpha为0.789。基于CT的脂肪组织测量与脂肪量(r = 0.56)、体重指数(BMI,r = 0.78)、腹部皮下脂肪面积(A-SAT,r = 0.49)和腰部皮下脂肪面积(L-SAT,r = 0.66)显示出显著相关性。回归分析表明CT-SMI具有较高的预测能力,解释了其约80%的方差(R = 0.796)。(4) 结论:通过BIVA、NU、HGS和CT对结直肠癌患者进行全面筛查可优化评估结果。这些方法在评估CCR患者的肌肉量、脂肪分布和营养状况方面相互补充。当无法进行CT检查或需要床边评估时,HGS、BIVA和NU可提供准确的身体成分评估。