Cuesta-Vargas Antonio, Arjona-Caballero José María, Olveira Gabriel, de Luis Román Daniel, Bellido-Guerrero Diego, García-Almeida Jose Manuel
Clinimetria Research Group, Department of Physiotherapy, Faculty of Health Sciences, Universidad de Málaga, 29071 Malaga, Spain.
Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain.
Diagnostics (Basel). 2025 Apr 13;15(8):988. doi: 10.3390/diagnostics15080988.
Malnutrition is a prevalent condition associated with adverse health outcomes, requiring the accurate assessment of muscle composition and fat distribution. This study presents a novel method for the automatic analysis of ultrasound images to estimate subcutaneous and visceral fat, as well as muscle, in patients with suspected malnutrition. The proposed system utilizes computer vision techniques to segment regions of interest (ROIs), calculate relevant variables, and store data for clinical evaluation. Unlike traditional segmentation methods that rely solely on thresholding or pre-defined masks, our method employs an iterative hierarchical approach to refine contour detection and improve localization accuracy. A dataset of abdominal and leg ultrasound images, captured in both longitudinal and transversal planes, was analyzed. Results showed higher precision for longitudinal scans compared to transversal scans, particularly for length-related variables, with the Y-axis Vastus intermediate achieving a precision of 92.87%. However, area-based measurements demonstrated lower precision due to differences between manual adjustments by experts and automatic geometric approximations. These findings highlight the system's potential for clinical use while emphasizing the need for further algorithmic refinements to improve precision in area calculations.
营养不良是一种与不良健康结果相关的普遍状况,需要准确评估肌肉组成和脂肪分布。本研究提出了一种用于自动分析超声图像的新方法,以估计疑似营养不良患者的皮下脂肪、内脏脂肪以及肌肉。所提出的系统利用计算机视觉技术对感兴趣区域(ROI)进行分割,计算相关变量,并存储数据以供临床评估。与仅依赖阈值处理或预定义掩码的传统分割方法不同,我们的方法采用迭代分层方法来细化轮廓检测并提高定位精度。分析了在纵向和横向平面捕获的腹部和腿部超声图像数据集。结果显示,纵向扫描的精度高于横向扫描,特别是对于与长度相关的变量,Y轴股中间肌的精度达到了92.87%。然而,由于专家手动调整与自动几何近似之间的差异,基于面积的测量显示出较低的精度。这些发现突出了该系统在临床应用中的潜力,同时强调了进一步改进算法以提高面积计算精度的必要性。