Suppr超能文献

计算机模拟揭示纤维连接蛋白 1 是胃癌的治疗和诊断标志物。

In Silico Insights Reveal Fibronectin 1 as a Theranostic Marker in Gastric Cancer.

机构信息

Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile.

Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile.

出版信息

Int J Mol Sci. 2024 Oct 16;25(20):11113. doi: 10.3390/ijms252011113.

Abstract

Gastric cancer (GC) is a complex and highly variable disease, ranking among the top five cancers diagnosed globally, and a leading cause of cancer-related deaths. Emerging from stomach lining cells amid chronic inflammation, it often advances to preneoplastic stages. Late-stage diagnoses and treatment challenges highlight the critical need for early detection and innovative biomarkers, motivating this study's focus on identifying theranostic markers through gene ontology analysis. By exploring deregulated biological processes, this study aims to uncover insights into cancer progression and associated markers, potentially identifying novel theranostic candidates in GC. Using public data from The Human Protein Atlas, this study pinpointed 299 prognostic genes, delineating 171 with unfavorable prognosis and 128 with favorable prognosis. Functional enrichment and protein-protein interaction analyses, supported by RNAseq results and conducted via Metascape and Cytoscape, highlighted five genes (, , , , and ) with promising theranostic potential. Notably, and exhibited significant promise, with showing a 370% expression increase in cancerous tissue, and it is possible that can also indicate the stratification status in GC. While further validation is essential, these findings provide new insights into molecular alterations in GC and potential avenues for clinical application of theranostic markers.

摘要

胃癌(GC)是一种复杂且高度多变的疾病,在全球诊断出的癌症中排名前五,也是癌症相关死亡的主要原因。它起源于胃衬里细胞中的慢性炎症,常常进展到癌前阶段。晚期诊断和治疗挑战突出表明需要早期检测和创新的生物标志物,这促使本研究专注于通过基因本体分析来识别治疗性生物标志物。通过探索失调的生物学过程,本研究旨在深入了解癌症进展和相关标志物,有可能在 GC 中发现新的治疗性候选物。本研究使用来自 The Human Protein Atlas 的公共数据,确定了 299 个预后基因,其中 171 个与不良预后相关,128 个与良好预后相关。通过 Metascape 和 Cytoscape 进行的功能富集和蛋白质-蛋白质相互作用分析,以及 RNAseq 结果的支持,突出了五个具有治疗潜力的基因(、、、、和)。值得注意的是、和表现出了显著的治疗潜力,在癌组织中表达增加了 370%,并且 也可能表明 GC 的分层状态。虽然进一步验证是必要的,但这些发现为 GC 中的分子改变和治疗性生物标志物的临床应用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4b/11507984/c4fed25671bc/ijms-25-11113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验