文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化 M13 衍生噬菌体可用于金纳米颗粒的合成和纳米金操作。

Engineered M13-Derived Bacteriophages Capable of Gold Nanoparticle Synthesis and Nanogold Manipulations.

机构信息

Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.

Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.

出版信息

Int J Mol Sci. 2024 Oct 18;25(20):11222. doi: 10.3390/ijms252011222.


DOI:10.3390/ijms252011222
PMID:39457002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11508339/
Abstract

For years, gold nanoparticles (AuNPs) have been widely used in medicine and industry. Although various experimental procedures have been reported for their preparation and manipulation, none of them is optimal for all purposes. In this work, we engineered the N-terminus of the pIII minor coat protein of bacteriophage (phage) M13 to expose a novel HLYLNTASTHLG peptide that effectively and specifically binds gold. In addition to binding gold, this engineered phage could synthesize spherical AuNPs of 20 nm and other sizes depending on the reaction conditions, aggregate them, and precipitate gold from a colloid, as revealed by transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM), as well as ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopic methods. We demonstrated that the engineered phage exposing a foreign peptide selected from a phage-displayed library may serve as a sustainable molecular factory for both the synthesis of the peptide and the subsequent overnight preparation of AuNPs from gold ions at room temperature and neutral pH in the absence of strong reducing agents, such as commonly used NaBH. Taken together, the results suggest the potential applicability of the engineered phage and the new, in vitro-identified gold-binding peptide in diverse biomimetic manipulations.

摘要

多年来,金纳米粒子(AuNPs)已在医学和工业领域得到广泛应用。尽管已经报道了各种用于制备和操作的实验程序,但没有一种程序适用于所有目的。在这项工作中,我们对噬菌体(phage)M13 的 pIII 次要外壳蛋白的 N 末端进行了工程改造,使其暴露了一种新的 HLYLNTASTHLG 肽,该肽能够有效且特异性地结合金。除了结合金之外,这种经过工程改造的噬菌体还可以根据反应条件合成 20nm 及其他尺寸的球形 AuNPs,通过透射电子显微镜(TEM)、原子力显微镜(AFM)和扫描电子显微镜(SEM)以及紫外可见(UV-vis)和傅里叶变换红外(FTIR)光谱法,聚集它们并从胶体中沉淀金。我们证明,从噬菌体展示文库中选择的暴露外源肽的工程噬菌体可作为一种可持续的分子工厂,用于在室温下和中性 pH 条件下,在没有强还原剂(如常用的 NaBH)的情况下,从金离子合成肽和随后过夜制备 AuNPs。总之,这些结果表明了工程噬菌体和新的体外鉴定的金结合肽在各种仿生操作中的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/00e342a98775/ijms-25-11222-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/9cf20c6e67a5/ijms-25-11222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/573a8224a6fb/ijms-25-11222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/099ce9a7ebc4/ijms-25-11222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/7ac5312e8de3/ijms-25-11222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/bb583756401c/ijms-25-11222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/c67b5fd9e083/ijms-25-11222-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/dbc96a9925bb/ijms-25-11222-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/4147615110da/ijms-25-11222-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/4a960d750358/ijms-25-11222-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/155dd21739d4/ijms-25-11222-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/00e342a98775/ijms-25-11222-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/9cf20c6e67a5/ijms-25-11222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/573a8224a6fb/ijms-25-11222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/099ce9a7ebc4/ijms-25-11222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/7ac5312e8de3/ijms-25-11222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/bb583756401c/ijms-25-11222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/c67b5fd9e083/ijms-25-11222-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/dbc96a9925bb/ijms-25-11222-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/4147615110da/ijms-25-11222-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/4a960d750358/ijms-25-11222-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/155dd21739d4/ijms-25-11222-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/11508339/00e342a98775/ijms-25-11222-g011.jpg

相似文献

[1]
Engineered M13-Derived Bacteriophages Capable of Gold Nanoparticle Synthesis and Nanogold Manipulations.

Int J Mol Sci. 2024-10-18

[2]
Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

Colloids Surf B Biointerfaces. 2017-8-24

[3]
Visualization of Engineered M13 Phages Bound to Bacterial Targets by Transmission Electron Microscopy.

Methods Mol Biol. 2024

[4]
Recombinant bacteriophages as gold binding bio-templates.

Colloids Surf B Biointerfaces. 2013-8-8

[5]
Antigen-Antibody Interaction-Based Self-Healing Capability of Hybrid Hydrogels Composed of Genetically Engineered Filamentous Viruses and Gold Nanoparticles.

Protein Pept Lett. 2018

[6]
Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces.

J Colloid Interface Sci. 2012-9-7

[7]
Biomimetic Plasmonic Nanophages by Head/Tail Self-Assembling: Gold Nanoparticle/Virus Interactions.

ACS Nano. 2024-8-13

[8]
Gold-Decorated M13 I-Forms and S-Forms for Targeted Photothermal Lysis of Bacteria.

ACS Appl Mater Interfaces. 2019-12-18

[9]
Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.

Bioconjug Chem. 2016-12-21

[10]
Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells.

J Nanobiotechnology. 2018-3-30

本文引用的文献

[1]
Biomimetic Plasmonic Nanophages by Head/Tail Self-Assembling: Gold Nanoparticle/Virus Interactions.

ACS Nano. 2024-8-13

[2]
Aggregable gold nanoparticles for cancer photothermal therapy.

J Mater Chem B. 2024-8-22

[3]
Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications.

ACS Omega. 2024-7-5

[4]
Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update.

Mol Biotechnol. 2025-6

[5]
Advances in Gold Nanoparticles: Synthesis, Functionalization Strategies, and Theranostic Applications in Cancer.

Crit Rev Ther Drug Carrier Syst. 2024

[6]
Peptide-Directed Synthesis of Aggregation-Induced Emission Enhancement-Active Gold Nanoclusters for Single- and Two-Photon Imaging of Lysosome and Expressed αβ Integrin Receptors.

Anal Chem. 2024-6-4

[7]
Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19.

Mol Biotechnol. 2025-4

[8]
An effective antibiofilm strategy based on bacteriophages armed with silver nanoparticles.

Sci Rep. 2024-4-20

[9]
Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review.

Int J Nanomedicine. 2024

[10]
Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application.

Pharmaceutics. 2024-2-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索