Suppr超能文献

仿生等离子体纳米噬菌体的头/尾自组装:金纳米粒子/病毒相互作用。

Biomimetic Plasmonic Nanophages by Head/Tail Self-Assembling: Gold Nanoparticle/Virus Interactions.

机构信息

Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.

School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland.

出版信息

ACS Nano. 2024 Aug 13;18(32):21302-21315. doi: 10.1021/acsnano.4c05198. Epub 2024 Jul 31.

Abstract

Gold nanoparticles (AuNPs), because of their dual plasmonic and catalytic functionalities, are among the most promising nanomaterials for the development of therapeutic and diagnostic tools for severe diseases such as cancer and neurodegeneration. Bacteriophages, massively present in human biofluids, are emerging as revolutionary biotechnological tools as they can be engineered to display multiple specific binding moieties, providing effective targeting ability, high stability, low cost, and sustainable production. Coupling AuNPs with phages can lead to an advanced generation of nanotools with great potential for biomedical applications. In the present study, we analyzed the interactions between differently sized AuNPs and filamentous M13 phages, establishing an advanced characterization platform that combines analytical techniques and computational models for an in-depth understanding of these hybrid self-assembling systems. A precise and structurally specific interaction of the AuNP-M13 hybrid complexes was observed, leading to a peculiar head/tail "tadpole-like" configuration. simulations allowed explaining the mechanisms underlying the preferential assembly route and providing information about AuNPs' size-dependent interplay with specific M13 capsid proteins. The AuNP-M13 structures were proven to be biomimetic, eluding the formation of biomolecular corona. By keeping the biological identity of the virion, hybrid nanostructures maintained their natural recognition/targeting ability even in the presence of biomolecular crowding. In addition, we were able to tune the hybrid nanostructures' tropism toward based on the AuNP size. Overall, our results set the fundamental basis and a standard workflow for the development of phage-based targeting nanotools, valuable for a wide spectrum of nanotechnology applications.

摘要

金纳米粒子(AuNPs)由于其双等离子体和催化功能,是开发癌症和神经退行性等严重疾病治疗和诊断工具最有前途的纳米材料之一。噬菌体大量存在于人体生物流体中,作为革命性的生物技术工具正在崭露头角,因为它们可以被设计成展示多个特定结合部分,提供有效的靶向能力、高稳定性、低成本和可持续生产。将 AuNPs 与噬菌体结合可以导致具有巨大生物医学应用潜力的新一代纳米工具。在本研究中,我们分析了不同大小的 AuNPs 与丝状 M13 噬菌体之间的相互作用,建立了一个先进的表征平台,该平台结合了分析技术和计算模型,以深入了解这些混合自组装系统。观察到 AuNP-M13 杂化复合物的精确和结构特异性相互作用,导致出现奇特的头/尾“蝌蚪状”构型。模拟允许解释优先组装途径的机制,并提供有关 AuNPs 与特定 M13 衣壳蛋白的尺寸依赖性相互作用的信息。AuNP-M13 结构被证明是仿生的,避免了生物分子冠的形成。通过保持病毒粒子的生物学特性,即使在存在生物分子拥挤的情况下,混合纳米结构也保持其天然的识别/靶向能力。此外,我们能够根据 AuNP 尺寸调整混合纳米结构的向性。总的来说,我们的结果为基于噬菌体的靶向纳米工具的开发奠定了基础,并提供了一个标准的工作流程,这对广泛的纳米技术应用具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验