Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal.
Genes (Basel). 2024 Oct 10;15(10):1308. doi: 10.3390/genes15101308.
Eukaryotic cells possess surveillance mechanisms that detect and degrade defective transcripts. Aberrant transcripts include mRNAs with a premature termination codon (PTC), targeted by the nonsense-mediated decay (NMD) pathway, and mRNAs lacking a termination codon, targeted by the nonstop decay (NSD) pathway. The eukaryotic exosome, a ribonucleolytic complex, plays a crucial role in mRNA processing and turnover through its catalytic subunits PM/Scl100 (Rrp6 in yeast), DIS3 (Rrp44 in yeast), and DIS3L1. Additionally, eukaryotic cells have other ribonucleases, such as SMG6 and XRN1, that participate in RNA surveillance. However, the specific pathways through which ribonucleases recognize and degrade mRNAs remain elusive. In this study, we characterized the involvement of human ribonucleases, both nuclear and cytoplasmic, in the mRNA surveillance mechanisms of NMD and NSD. We performed knockdowns of SMG6, PM/Scl100, XRN1, DIS3, and DIS3L1, analyzing the resulting changes in mRNA levels of selected natural NMD targets by RT-qPCR. Additionally, we examined the levels of different human β-globin variants under the same conditions: wild-type, NMD-resistant, NMD-sensitive, and NSD-sensitive. Our results demonstrate that all the studied ribonucleases are involved in the decay of certain endogenous NMD targets. Furthermore, we observed that the ribonucleases SMG6 and DIS3 contribute to the degradation of all β-globin variants, with an exception for βNS in the former case. This is also the case for PM/Scl100, which affects all β-globin variants except the NMD-sensitive variants. In contrast, DIS3L1 and XRN1 show specificity for β-globin WT and NMD-resistant variants. These findings suggest that eukaryotic ribonucleases are target-specific rather than pathway-specific. In addition, our data suggest that ribonucleases play broader roles in mRNA surveillance and degradation mechanisms beyond just NMD and NSD.
真核细胞拥有检测和降解异常转录本的监控机制。异常转录本包括具有过早终止密码子(PTC)的 mRNA,它们被无意义介导的降解(NMD)途径靶向,以及缺乏终止密码子的 mRNA,它们被非终止衰变(NSD)途径靶向。真核细胞的 exosome 是一种核糖核酸酶复合物,通过其催化亚基 PM/Scl100(酵母中的 Rrp6)、DIS3(酵母中的 Rrp44)和 DIS3L1 在 mRNA 加工和周转中发挥关键作用。此外,真核细胞还有其他核糖核酸酶,如 SMG6 和 XRN1,它们参与 RNA 监控。然而,核糖核酸酶识别和降解 mRNA 的具体途径仍然难以捉摸。在这项研究中,我们研究了核内和细胞质中的人类核糖核酸酶在 NMD 和 NSD 的 mRNA 监控机制中的作用。我们通过 RT-qPCR 分析了选定的天然 NMD 靶标 mRNA 水平的变化,对 SMG6、PM/Scl100、XRN1、DIS3 和 DIS3L1 进行了敲低。此外,我们在相同条件下检查了不同人类 β-珠蛋白变体的水平:野生型、NMD 抗性、NMD 敏感和 NSD 敏感。我们的结果表明,所有研究的核糖核酸酶都参与了某些内源性 NMD 靶标的衰变。此外,我们观察到核糖核酸酶 SMG6 和 DIS3 有助于所有 β-珠蛋白变体的降解,除了前者中的 βNS。PM/Scl100 也是如此,它影响除了 NMD 敏感变体之外的所有 β-珠蛋白变体。相比之下,DIS3L1 和 XRN1 对 β-珠蛋白 WT 和 NMD 抗性变体具有特异性。这些发现表明,真核核糖核酸酶是针对特定靶标而不是特定途径的。此外,我们的数据表明,核糖核酸酶在 NMD 和 NSD 之外的 mRNA 监控和降解机制中发挥更广泛的作用。