Suppr超能文献

流道尺寸、浇口尺寸、聚合物粘度及成型工艺对几何平衡多型腔注塑成型中填充不平衡的影响

Impact of Runner Size, Gate Size, Polymer Viscosity, and Molding Process on Filling Imbalance in Geometrically Balanced Multi-Cavity Injection Molding.

作者信息

Chien Minyuan, Lin Yaotsung, Huang Chaotsai, Hwang Shyhshin

机构信息

Department of Vehicle Engineering, Chien Hsin University of Science and Technology, Taoyuan City 320678, Taiwan.

Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 411030, Taiwan.

出版信息

Polymers (Basel). 2024 Oct 11;16(20):2874. doi: 10.3390/polym16202874.

Abstract

The injection molding process is one of the most widely used methods for polymer processing in mass production. Three critical factors in this process include the type of polymer, injection molding machines, and processing molds. Polypropylene (PP) is a widely used semi-crystalline polymer due to its favorable flow characteristics, including a high melt flow index and the absence of a need for a mold temperature controller. Additionally, PP exhibits good elongation and toughness, making it suitable for applications such as box hinges. However, its tensile strength is a limitation; thus, glass fiber is added to enhance this property. It is important to note that the incorporation of glass fiber increases the viscosity of PP. Multi-cavity molds are commonly employed to achieve cost-effective and efficient mass production. The filling challenges associated with geometrically balanced layouts are well documented in the literature. These issues arise due to the varying shear rates of the melt in the runner. High shear rate melts lead to high melt temperatures, which decrease melt viscosity and facilitate easier flow. Consequently, this results in an imbalanced filling phenomenon. This study examines the impact of runner size, gate size, polymer viscosity, and molding process on the filling imbalanced problem in multi-cavity injection molds. Tensile bar injection molding was performed using conventional injection molding (CIM) and microcellular injection molding (MIM) techniques. The tensile properties of the imbalanced multi-cavity molds were analyzed. Flow length within the cavity served as an indicator of the filling imbalance. Additionally, computer simulations were conducted to assess the shear rate's effect on the runner's melt temperature. The results indicated that small runner and gate sizes exacerbate the filling imbalance. Conversely, glass fiber-filled polymer composites also contribute to increased filling imbalance. However, foamed polymers can mitigate the filling imbalance phenomenon.

摘要

注塑成型工艺是大规模生产中聚合物加工最广泛使用的方法之一。该工艺中的三个关键因素包括聚合物类型、注塑机和加工模具。聚丙烯(PP)是一种广泛使用的半结晶聚合物,因其具有良好的流动特性,包括高熔体流动指数且无需模具温度控制器。此外,PP具有良好的伸长率和韧性,使其适用于诸如箱式铰链等应用。然而,其拉伸强度是一个限制因素;因此,添加玻璃纤维以增强这一性能。需要注意的是,玻璃纤维的加入会增加PP的粘度。多型腔模具通常用于实现具有成本效益和高效的大规模生产。与几何平衡布局相关的填充挑战在文献中有充分记载。这些问题是由于流道中熔体的剪切速率不同而产生的。高剪切速率的熔体导致熔体温度升高,这会降低熔体粘度并便于更轻松地流动。因此,这会导致填充不平衡现象。本研究考察了流道尺寸、浇口尺寸、聚合物粘度和成型工艺对多型腔注塑模具中填充不平衡问题的影响。使用传统注塑成型(CIM)和微孔注塑成型(MIM)技术进行拉伸条注塑成型。分析了不平衡多型腔模具的拉伸性能。型腔内的流动长度用作填充不平衡的指标。此外,进行了计算机模拟以评估剪切速率对流道熔体温度的影响。结果表明,小的流道和浇口尺寸会加剧填充不平衡。相反,玻璃纤维增强聚合物复合材料也会导致填充不平衡加剧。然而,发泡聚合物可以减轻填充不平衡现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4293/11511498/692ece8a812d/polymers-16-02874-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验