Suppr超能文献

提取物通过调节分子和生理过程改善水分亏缺条件下橄榄的性能。

Extract Improves Olive Performance Under Water Deficit Through the Modulation of Molecular and Physiological Processes.

作者信息

Dias Maria Celeste, Figueiras Rui, Sousa Marta, Araújo Márcia, de Oliveira José Miguel P Ferreira, Pinto Diana C G A, Silva Artur M S, Santos Conceição

机构信息

Center for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.

LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Plants (Basel). 2024 Oct 17;13(20):2908. doi: 10.3390/plants13202908.

Abstract

The olive tree is well adapted to the Mediterranean climate, but how orchards based on intensive practices will respond to increasing drought is unknown. This study aimed to determine if the application of a commercial biostimulant improves olive tolerance to drought. Potted plants (cultivars Arbequina and Galega) were pre-treated with an extract of (four applications, 200 mL of 0.50 g/L extract per plant), and were then well irrigated (100% field capacity) or exposed to water deficit (50% field capacity) for 69 days. Plant height, photosynthesis, water status, pigments, lipophilic compounds, and the expression of stress protective genes (-protective proteins' dehydrin; -aquaporin; and -heat shock proteins) were analyzed. Water deficit negatively affected olive physiology, but the biostimulant mitigated these damages through the modulation of molecular and physiological processes according to the cultivar and irrigation. benefits were more expressive under water deficit, particularly in Galega, promoting height (increase of 15%) and photosynthesis (increase of 34%), modulating the stomatal aperture through the regulation of expression, and keeping and upregulated to strengthen stress protection. In both cultivars, biostimulant promoted carbohydrate accumulation and intrinsic water-use efficiency (iWUE). Under good irrigation, biostimulant increased energy availability and iWUE in Galega. These data highlight the potential of this biostimulant to improve olive performance, providing higher tolerance to overcome climate change scenarios. The use of this biostimulant can improve the establishment of younger olive trees in the field, strengthen the plant's capacity to withstand field stresses, and lead to higher growth and crop productivity.

摘要

橄榄树非常适应地中海气候,但基于集约化种植方式的果园将如何应对日益严重的干旱尚不清楚。本研究旨在确定施用一种商业生物刺激剂是否能提高橄榄树的耐旱性。将盆栽植物(品种为阿贝基纳和加莱加)用[提取物名称未给出]提取物进行预处理(每株植物进行四次处理,每次200毫升0.50克/升的提取物),然后充分灌溉(田间持水量的100%)或使其遭受水分亏缺(田间持水量的50%)69天。分析了株高、光合作用、水分状况、色素、亲脂性化合物以及应激保护基因(脱水素——保护性蛋白;水通道蛋白;热休克蛋白)的表达情况。水分亏缺对橄榄树生理产生负面影响,但生物刺激剂根据品种和灌溉情况通过调节分子和生理过程减轻了这些损害。在水分亏缺条件下,其益处更为明显,尤其是在加莱加品种中,促进了株高增长(增加了15%)和光合作用(增加了34%),通过调节[基因名称未给出]的表达来调节气孔孔径,并使[基因名称未给出]和[基因名称未给出]上调以增强应激保护。在两个品种中,生物刺激剂都促进了碳水化合物积累和内在水分利用效率(iWUE)。在良好灌溉条件下,生物刺激剂提高了加莱加品种的能量可用性和iWUE。这些数据突出了这种生物刺激剂改善橄榄树性能的潜力,提供了更高的耐受性以应对气候变化情景。使用这种生物刺激剂可以改善田间幼龄橄榄树的定植,增强植物抵御田间胁迫的能力,并带来更高的生长量和作物生产力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f78/11511455/00dea3f7906f/plants-13-02908-g001.jpg

相似文献

3
Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants.
Plant Physiol Biochem. 2018 May;126:63-73. doi: 10.1016/j.plaphy.2018.02.024. Epub 2018 Mar 2.
4
Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract.
Plant Physiol Biochem. 2021 Jan;158:228-243. doi: 10.1016/j.plaphy.2020.11.008. Epub 2020 Nov 13.
5
A Seaweed Extract-Based Biostimulant Mitigates Drought Stress in Sugarcane.
Front Plant Sci. 2022 Apr 28;13:865291. doi: 10.3389/fpls.2022.865291. eCollection 2022.
6
Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set.
Front Plant Sci. 2020 Jun 25;11:807. doi: 10.3389/fpls.2020.00807. eCollection 2020.
7
Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism.
Plant Physiol Biochem. 2019 Jun;139:21-32. doi: 10.1016/j.plaphy.2019.03.002. Epub 2019 Mar 8.
8
Seaweed extract improve drought tolerance of soybean by regulating stress-response genes.
AoB Plants. 2017 Oct 11;10(1):plx051. doi: 10.1093/aobpla/plx051. eCollection 2018 Feb.
10
Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin.
Photosynth Res. 2024 Jan;159(1):1-16. doi: 10.1007/s11120-023-01052-8. Epub 2023 Nov 4.

引用本文的文献

1

本文引用的文献

3
The power of seaweeds as plant biostimulants to boost crop production under abiotic stress.
Plant Cell Environ. 2022 Sep;45(9):2537-2553. doi: 10.1111/pce.14391. Epub 2022 Jul 19.
4
Stomatal closure during water deficit is controlled by below-ground hydraulics.
Ann Bot. 2022 Jan 28;129(2):161-170. doi: 10.1093/aob/mcab141.
5
Antioxidant Adjustments of Olive Trees () under Field Stress Conditions.
Plants (Basel). 2021 Apr 1;10(4):684. doi: 10.3390/plants10040684.
7
Transcriptomics of Biostimulation of Plants Under Abiotic Stress.
Front Genet. 2021 Feb 3;12:583888. doi: 10.3389/fgene.2021.583888. eCollection 2021.
8
Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery.
Phytochemistry. 2021 May;185:112695. doi: 10.1016/j.phytochem.2021.112695. Epub 2021 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验