Suppr超能文献

一种用于具有许多悬垂链的高阻尼玻璃态弹性体的基团富集粘弹性模型。

A Group-Enriched Viscoelastic Model for High-Damping Vitrimers with Many Dangling Chains.

作者信息

Li Yan, Feng Haibo, Xiong Jing, Li Li

机构信息

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Materials (Basel). 2024 Oct 17;17(20):5062. doi: 10.3390/ma17205062.

Abstract

Classical viscoelastic models usually only consider the motion of chain segments and the motion of the entire molecular chain; therefore, they will cause inevitable errors when modeling self-healing vitrimer materials with many group movements. In this paper, a group-enriched viscoelastic model is proposed for self-healing vitrimers where the group effect cannot be neglected. We synthesize a specific damping vitrimer with many dangling chains, surpassing the limited loss modulus of conventional engineering materials. Due to the dangling chains, the damping capability can be improved and the group effect cannot be neglected in the synthesized damping vitrimer. The group-enriched viscoelastic model accurately captures the experimental damping behavior of the synthesized damping vitrimer. Our results indicate that the group-enriched viscoelastic model can improve the accuracy of classical viscoelastic models. It is shown that the group effect can be ignored at low frequencies since the chain segments have sufficient time for extensive realignment; however, the group effect can become significant in the case of high frequency or low temperature.

摘要

经典粘弹性模型通常只考虑链段的运动和整个分子链的运动;因此,在对具有许多基团运动的自愈合 Vitrimer 材料进行建模时,它们会导致不可避免的误差。本文针对不能忽略基团效应的自愈合 Vitrimer 材料,提出了一种基团增强粘弹性模型。我们合成了一种具有许多悬垂链的特定阻尼 Vitrimer,其损耗模量超过了传统工程材料的有限值。由于悬垂链的存在,合成的阻尼 Vitrimer 的阻尼能力可以得到提高,且基团效应不可忽略。基团增强粘弹性模型准确地捕捉了合成阻尼 Vitrimer 的实验阻尼行为。我们结果表明,基团增强粘弹性模型可以提高经典粘弹性模型的准确性。结果表明,在低频下,由于链段有足够的时间进行广泛的重新排列,基团效应可以忽略不计;然而,在高频或低温情况下,基团效应可能会变得显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/11509541/e24ef9b38047/materials-17-05062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验