Betancourt-Cantera Luis G, Reséndiz-Trejo Yaneli, Sánchez-De Jesús Félix, Cortés Escobedo Claudia A, Bolarín-Miró Ana M
Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Mexico.
Instituto Politécnico Nacional, Centro de Investigación e Innovación Tecnológica, Ciudad de México 02250, Mexico.
Materials (Basel). 2024 Oct 18;17(20):5087. doi: 10.3390/ma17205087.
BiNaTiO (BNT) emerges as a promising ferroelectric and piezoelectric lead-free candidate to substitute the contaminant Pb[TiZr]O (PZT). However, to obtain optimal ferroelectric and piezoelectric properties, BNT must be sintered at high temperatures. In this work, the reduction of sintering temperature by using iron added to BNT is demonstrated, without significant detriment to the dielectric properties. BNT-xFe with iron from x = 0 to 0.1 mol (∆x = 0.025) were synthesized using high-energy ball milling followed by sintering at 900 °C. XRD analysis confirmed the presence of rhombohedral BNT together with a new phase of NaFeTiO (NFT), which was also corroborated using optical and electronic microscopy. The relative permittivity, in the range of 400 to 500 across all the frequencies, demonstrated the stabilization effect of the iron in BNT. Additionally, the presence of iron elevates the transition from ferroelectric to paraelectric structure, increasing it from 330 °C in the iron-free sample to 370 °C in the sample with the maximum iron concentration (0.1 mol). The dielectric losses maintain constant values lower than 0.1. In this case, low dielectric loss values are ideal for ferroelectric and piezoelectric materials, as they ensure minimal energy dissipation. Likewise, the electrical conductivity maintains a semiconductor behavior across a range of 50 Hz to 1 × 10 Hz, indicating the potential of these materials for applications at different frequencies. Additionally, the piezoelectric constant (d) values decrease slightly when low concentrations of iron are added, maintaining values between 30 and 48 pC/N for BNT-0.025Fe and BNT-0.05Fe, respectively.
钛酸铋钠(BNT)作为一种有前景的铁电和压电无铅材料,有望替代含铅污染物钛酸铅锆(PZT)。然而,为了获得最佳的铁电和压电性能,BNT必须在高温下烧结。在这项工作中,展示了通过向BNT中添加铁来降低烧结温度,而不会对介电性能造成显著损害。使用高能球磨法合成了铁含量x从0到0.1摩尔(∆x = 0.025)的BNT-xFe,随后在900°C下烧结。X射线衍射分析证实了菱方BNT以及新相NaFeTiO(NFT)的存在,光学和电子显微镜也证实了这一点。在所有频率范围内,相对介电常数在400到500之间,证明了铁的稳定作用。此外,铁的存在提高了从铁电结构到顺电结构的转变温度,从无铁样品中的330°C提高到铁浓度最高(0.1摩尔)样品中的370°C。介电损耗保持低于0.1的恒定值。在这种情况下,低介电损耗值对于铁电和压电材料来说是理想的,因为它们确保了最小的能量耗散。同样,电导率在50Hz到1×10Hz的范围内保持半导体行为,表明这些材料在不同频率下应用的潜力。此外,当添加低浓度的铁时,压电常数(d)值略有下降,BNT-0.025Fe和BNT-0.05Fe的压电常数分别保持在30到48pC/N之间。