Suppr超能文献

受路径追踪启发的非视距单光子雪崩二极管数据建模

Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data.

作者信息

Scholes Stirling, Leach Jonathan

机构信息

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

出版信息

Sensors (Basel). 2024 Oct 10;24(20):6522. doi: 10.3390/s24206522.

Abstract

Non-Line of Sight (NLOS) imaging has gained attention for its ability to detect and reconstruct objects beyond the direct line of sight, using scattered light, with applications in surveillance and autonomous navigation. This paper presents a versatile framework for modeling the temporal distribution of photon detections in direct Time of Flight (dToF) Lidar NLOS systems. Our approach accurately accounts for key factors such as material reflectivity, object distance, and occlusion by utilizing a proof-of-principle simulation realized with the Unreal Engine. By generating likelihood distributions for photon detections over time, we propose a mechanism for the simulation of NLOS imaging data, facilitating the optimization of NLOS systems and the development of novel reconstruction algorithms. The framework allows for the analysis of individual components of photon return distributions, yielding results consistent with prior experimental data and providing insights into the effects of extended surfaces and multi-path scattering. We introduce an optimized secondary scattering approach that captures critical multi-path information with reduced computational cost. This work provides a robust tool for the design and improvement of dToF SPAD Lidar-based NLOS imaging systems.

摘要

非视距(NLOS)成像因其能够利用散射光检测和重建直接视线以外的物体而受到关注,在监视和自主导航领域有应用。本文提出了一个通用框架,用于对直接飞行时间(dToF)激光雷达NLOS系统中光子检测的时间分布进行建模。我们的方法通过利用虚幻引擎实现的原理验证模拟,准确地考虑了材料反射率、物体距离和遮挡等关键因素。通过生成随时间变化的光子检测似然分布,我们提出了一种模拟NLOS成像数据的机制,有助于优化NLOS系统和开发新型重建算法。该框架允许对光子返回分布的各个组件进行分析,产生与先前实验数据一致的结果,并深入了解扩展表面和多径散射的影响。我们引入了一种优化的二次散射方法,以降低计算成本捕获关键的多径信息。这项工作为基于dToF SPAD激光雷达的NLOS成像系统的设计和改进提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/11511105/c891b5c54d6a/sensors-24-06522-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验