Rafique Muhammad Aasim
Department of Information Systems, College of Computer Sciences & Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Sensors (Basel). 2024 Oct 10;24(20):6541. doi: 10.3390/s24206541.
Object segmentation in images is typically spatial and focuses on the spatial coherence of pixels. Nanoparticles in electron microscopy images are also segmented frame by frame, with subsequent morphological analysis. However, morphological analysis is inherently sequential, and a temporal regularity is evident in the process. In this study, we extend the spatially focused morphological analysis by incorporating a fusion of hard and soft inductive bias from sequential machine learning techniques to account for temporal relationships. Previously, spiky Au nanoparticles (Au-SNPs) in electron microscopy images were analyzed, and their morphological properties were automatically generated using a hourglass convolutional neural network architecture. In this study, recurrent layers are integrated to capture the natural, sequential growth of the particles. The network is trained with a spike-focused loss function. Continuous segmentation of the images explores the regressive relationships among natural growth features, generating morphological statistics of the nanoparticles. This study comprehensively evaluates the proposed approach by comparing the results of segmentation and morphological properties analysis, demonstrating its superiority over earlier methods.
图像中的目标分割通常是基于空间的,并且侧重于像素的空间连贯性。电子显微镜图像中的纳米颗粒也是逐帧分割的,并随后进行形态学分析。然而,形态学分析本质上是顺序性的,并且在这个过程中时间规律性很明显。在本研究中,我们通过融合来自顺序机器学习技术的硬归纳偏差和软归纳偏差来扩展基于空间的形态学分析,以考虑时间关系。此前,对电子显微镜图像中的尖状金纳米颗粒(Au-SNP)进行了分析,并使用沙漏卷积神经网络架构自动生成了它们的形态学特性。在本研究中,集成了循环层以捕捉颗粒自然的、顺序性的生长过程。该网络使用以尖峰为重点的损失函数进行训练。对图像的连续分割探索了自然生长特征之间的回归关系,生成了纳米颗粒的形态学统计数据。本研究通过比较分割结果和形态学特性分析,全面评估了所提出的方法,证明了其优于早期方法。