Suppr超能文献

利用深度学习计算尖状纳米颗粒自动形态学特性中的时间特征

Exploiting Temporal Features in Calculating Automated Morphological Properties of Spiky Nanoparticles Using Deep Learning.

作者信息

Rafique Muhammad Aasim

机构信息

Department of Information Systems, College of Computer Sciences & Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

出版信息

Sensors (Basel). 2024 Oct 10;24(20):6541. doi: 10.3390/s24206541.

Abstract

Object segmentation in images is typically spatial and focuses on the spatial coherence of pixels. Nanoparticles in electron microscopy images are also segmented frame by frame, with subsequent morphological analysis. However, morphological analysis is inherently sequential, and a temporal regularity is evident in the process. In this study, we extend the spatially focused morphological analysis by incorporating a fusion of hard and soft inductive bias from sequential machine learning techniques to account for temporal relationships. Previously, spiky Au nanoparticles (Au-SNPs) in electron microscopy images were analyzed, and their morphological properties were automatically generated using a hourglass convolutional neural network architecture. In this study, recurrent layers are integrated to capture the natural, sequential growth of the particles. The network is trained with a spike-focused loss function. Continuous segmentation of the images explores the regressive relationships among natural growth features, generating morphological statistics of the nanoparticles. This study comprehensively evaluates the proposed approach by comparing the results of segmentation and morphological properties analysis, demonstrating its superiority over earlier methods.

摘要

图像中的目标分割通常是基于空间的,并且侧重于像素的空间连贯性。电子显微镜图像中的纳米颗粒也是逐帧分割的,并随后进行形态学分析。然而,形态学分析本质上是顺序性的,并且在这个过程中时间规律性很明显。在本研究中,我们通过融合来自顺序机器学习技术的硬归纳偏差和软归纳偏差来扩展基于空间的形态学分析,以考虑时间关系。此前,对电子显微镜图像中的尖状金纳米颗粒(Au-SNP)进行了分析,并使用沙漏卷积神经网络架构自动生成了它们的形态学特性。在本研究中,集成了循环层以捕捉颗粒自然的、顺序性的生长过程。该网络使用以尖峰为重点的损失函数进行训练。对图像的连续分割探索了自然生长特征之间的回归关系,生成了纳米颗粒的形态学统计数据。本研究通过比较分割结果和形态学特性分析,全面评估了所提出的方法,证明了其优于早期方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4834/11511305/fb5ed955056a/sensors-24-06541-g001.jpg

相似文献

2
Segmentation and Morphology Computation of a Spiky Nanoparticle Using the Hourglass Neural Network.
ACS Omega. 2023 May 12;8(20):17834-17840. doi: 10.1021/acsomega.3c00783. eCollection 2023 May 23.
3
A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images.
Comput Methods Programs Biomed. 2021 Apr;202:105958. doi: 10.1016/j.cmpb.2021.105958. Epub 2021 Feb 2.
5
Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.
6
Sequential vessel segmentation via deep channel attention network.
Neural Netw. 2020 Aug;128:172-187. doi: 10.1016/j.neunet.2020.05.005. Epub 2020 May 13.
7
Deep learning for automated segmentation and counting of hypocotyl and cotyledon regions in mature D. Don. somatic embryo images.
Front Plant Sci. 2024 Mar 1;15:1322920. doi: 10.3389/fpls.2024.1322920. eCollection 2024.
9
A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
Comput Biol Med. 2020 Nov;126:104036. doi: 10.1016/j.compbiomed.2020.104036. Epub 2020 Oct 8.
10
Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
Comput Methods Programs Biomed. 2021 Jun;204:106059. doi: 10.1016/j.cmpb.2021.106059. Epub 2021 Mar 21.

本文引用的文献

1
Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress".
Heliyon. 2024 May 16;10(10):e31393. doi: 10.1016/j.heliyon.2024.e31393. eCollection 2024 May 30.
2
Morphological Design and Synthesis of Nanoparticles.
Nanomaterials (Basel). 2024 Feb 15;14(4):360. doi: 10.3390/nano14040360.
3
Segmentation and Morphology Computation of a Spiky Nanoparticle Using the Hourglass Neural Network.
ACS Omega. 2023 May 12;8(20):17834-17840. doi: 10.1021/acsomega.3c00783. eCollection 2023 May 23.
4
Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning.
Nanoscale Adv. 2023 Mar 23;5(8):2318-2326. doi: 10.1039/d2na00781a. eCollection 2023 Apr 11.
5
Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy.
RSC Adv. 2023 Jan 19;13(5):2795-2802. doi: 10.1039/d2ra07812k. eCollection 2023 Jan 18.
6
In search of best automated model: Explaining nanoparticle TEM image segmentation.
Ultramicroscopy. 2022 Mar;233:113437. doi: 10.1016/j.ultramic.2021.113437. Epub 2021 Dec 14.
7
Advancing Physical Chemistry with Machine Learning.
J Phys Chem Lett. 2020 Nov 19;11(22):9656-9658. doi: 10.1021/acs.jpclett.0c03130. Epub 2020 Nov 5.
8
Determination of the Maturation Status of Dendritic Cells by Applying Pattern Recognition to High-Resolution Images.
J Phys Chem B. 2020 Oct 1;124(39):8540-8548. doi: 10.1021/acs.jpcb.0c06437. Epub 2020 Sep 22.
9
Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium.
Biomacromolecules. 2021 Jan 11;22(1):126-133. doi: 10.1021/acs.biomac.0c00726. Epub 2020 Jun 26.
10
Growth Kinetics of Individual Au Spiky Nanoparticles Using Liquid-Cell Transmission Electron Microscopy.
J Am Chem Soc. 2019 Aug 14;141(32):12601-12609. doi: 10.1021/jacs.9b03718. Epub 2019 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验