Suppr超能文献

使用递归神经网络和图搜索自动分割光学相干断层扫描(OCT)视网膜边界

Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.

作者信息

Kugelman Jason, Alonso-Caneiro David, Read Scott A, Vincent Stephen J, Collins Michael J

机构信息

Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.

Abstract

The manual segmentation of individual retinal layers within optical coherence tomography (OCT) images is a time-consuming task and is prone to errors. The investigation into automatic segmentation methods that are both efficient and accurate has seen a variety of methods proposed. In particular, recent machine learning approaches have focused on the use of convolutional neural networks (CNNs). Traditionally applied to sequential data, recurrent neural networks (RNNs) have recently demonstrated success in the area of image analysis, primarily due to their usefulness to extract temporal features from sequences of images or volumetric data. However, their potential use in OCT retinal layer segmentation has not previously been reported, and their direct application for extracting spatial features from individual 2D images has been limited. This paper proposes the use of a recurrent neural network trained as a patch-based image classifier (retinal boundary classifier) with a graph search (RNN-GS) to segment seven retinal layer boundaries in OCT images from healthy children and three retinal layer boundaries in OCT images from patients with age-related macular degeneration (AMD). The optimal architecture configuration to maximize classification performance is explored. The results demonstrate that a RNN is a viable alternative to a CNN for image classification tasks in the case where the images exhibit a clear sequential structure. Compared to a CNN, the RNN showed a slightly superior average generalization classification accuracy. Secondly, in terms of segmentation, the RNN-GS performed competitively against a previously proposed CNN based method (CNN-GS) with respect to both accuracy and consistency. These findings apply to both normal and AMD data. Overall, the RNN-GS method yielded superior mean absolute errors in terms of the boundary position with an average error of 0.53 pixels (normal) and 1.17 pixels (AMD). The methodology and results described in this paper may assist the future investigation of techniques within the area of OCT retinal segmentation and highlight the potential of RNN methods for OCT image analysis.

摘要

在光学相干断层扫描(OCT)图像中对单个视网膜层进行手动分割是一项耗时的任务,而且容易出错。人们对高效且准确的自动分割方法进行了研究,提出了多种方法。特别是,最近的机器学习方法聚焦于卷积神经网络(CNN)的应用。循环神经网络(RNN)传统上应用于序列数据,最近在图像分析领域也取得了成功,这主要归功于其在从图像序列或体数据中提取时间特征方面的有效性。然而,此前尚未有关于其在OCT视网膜层分割中的潜在应用的报道,并且其在从单个二维图像中提取空间特征方面的直接应用也较为有限。本文提出使用一种经过训练的循环神经网络作为基于图像块的图像分类器(视网膜边界分类器),结合图搜索(RNN-GS)来分割健康儿童OCT图像中的七个视网膜层边界以及年龄相关性黄斑变性(AMD)患者OCT图像中的三个视网膜层边界。探索了使分类性能最大化的最优架构配置。结果表明,在图像呈现清晰序列结构的情况下,对于图像分类任务,RNN是CNN的一个可行替代方案。与CNN相比,RNN的平均泛化分类准确率略高。其次,在分割方面,RNN-GS在准确性和一致性方面与先前提出的基于CNN的方法(CNN-GS)相比具有竞争力。这些发现适用于正常数据和AMD数据。总体而言,RNN-GS方法在边界位置方面产生的平均绝对误差更小,正常数据的平均误差为0.53像素,AMD数据的平均误差为1.17像素。本文所描述的方法和结果可能有助于未来对OCT视网膜分割领域技术的研究,并突出了RNN方法在OCT图像分析中的潜力。

相似文献

1
Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.
2
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
3
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
5
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
6
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
8
OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN.
Sensors (Basel). 2022 Mar 4;22(5):2016. doi: 10.3390/s22052016.
10
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Int J Comput Assist Radiol Surg. 2018 Jul;13(7):967-975. doi: 10.1007/s11548-018-1733-7. Epub 2018 Mar 19.

引用本文的文献

1
Recent Optical Coherence Tomography (OCT) Innovations for Increased Accessibility and Remote Surveillance.
Bioengineering (Basel). 2025 Apr 23;12(5):441. doi: 10.3390/bioengineering12050441.
2
Deep learning for optical tweezers.
Nanophotonics. 2024 May 23;13(17):3017-3035. doi: 10.1515/nanoph-2024-0013. eCollection 2024 Jul.
4
Boundary-Repairing Dual-Path Network for Retinal Layer Segmentation in OCT Image with Pigment Epithelial Detachment.
J Imaging Inform Med. 2024 Dec;37(6):3101-3130. doi: 10.1007/s10278-024-01093-y. Epub 2024 May 13.
5
Peripheral Choroidal Response to Localized Defocus Blur: Influence of Native Peripheral Aberrations.
Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):14. doi: 10.1167/iovs.65.4.14.
6
Recurrent and Concurrent Prediction of Longitudinal Progression of Stargardt Atrophy and Geographic Atrophy.
medRxiv. 2024 Feb 13:2024.02.11.24302670. doi: 10.1101/2024.02.11.24302670.
8
Rapid measurement of epidermal thickness in OCT images of skin.
Sci Rep. 2024 Jan 26;14(1):2230. doi: 10.1038/s41598-023-47051-6.
10
OCT angiography and its retinal biomarkers [Invited].
Biomed Opt Express. 2023 Aug 10;14(9):4542-4566. doi: 10.1364/BOE.495627. eCollection 2023 Sep 1.

本文引用的文献

2
Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction.
IEEE Trans Med Imaging. 2019 Jan;38(1):280-290. doi: 10.1109/TMI.2018.2863670. Epub 2018 Aug 6.
3
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
4
Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks.
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:177-184. doi: 10.1007/978-3-319-67561-9_20. Epub 2017 Sep 9.
5
Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy.
Biomed Opt Express. 2017 Aug 10;8(9):4061-4076. doi: 10.1364/BOE.8.004061. eCollection 2017 Sep 1.
6
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
7
Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks.
Biomed Opt Express. 2017 Jun 16;8(7):3292-3316. doi: 10.1364/BOE.8.003292. eCollection 2017 Jul 1.
8
Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited].
Biomed Opt Express. 2017 Jun 15;8(7):3248-3280. doi: 10.1364/BOE.8.003248. eCollection 2017 Jul 1.
9
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
10
Longitudinal changes in macular retinal layer thickness in pediatric populations: Myopic vs non-myopic eyes.
PLoS One. 2017 Jun 29;12(6):e0180462. doi: 10.1371/journal.pone.0180462. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验