Suppr超能文献

基于时延估计的康复外骨骼机器人计算力矩控制与鲁棒自适应 RBF 神经网络补偿器

Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.

机构信息

School of Automation, Nanjing University of Science & Technology, Nanjing, 210094, China.

School of Automation, Nanjing University of Science & Technology, Nanjing, 210094, China.

出版信息

ISA Trans. 2020 Feb;97:171-181. doi: 10.1016/j.isatra.2019.07.030. Epub 2019 Aug 6.

Abstract

A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation.

摘要

提出了一种结合基于时滞估计(TDE)的计算力矩控制(CTC)和鲁棒自适应 RBF 神经网络的 12 自由度下肢外骨骼步态康复任务的新方法。除了 CTC 的常规优势外,TDE 技术还用于估计未建模动态和外部干扰。为了实现更精确的跟踪,设计了鲁棒自适应 RBF 神经网络补偿器来逼近和补偿 TDE 误差。最终通过 Lyapunov 准则保证渐近稳定性。为了验证所提出的方法,使用 SolidWorks、SimMechanics 和 MATLAB/Robotics Toolbox 进行了联合仿真实验。与 CTC、基于滑模的 CTC 和基于 TDE 的 CTC 相比,联合仿真证明了所提出的控制器具有更高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验